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В статье представлен систематический обзор 

современных методов повышения 

износостойкости и долговечности рабочих 

органов почвообрабатывающих машин. На 

основе анализа 89 научных публикаций (2014–

2025 гг.) исследованы механизмы изнашивания, 

методы упрочнения и восстановления деталей. 

Методология исследования включает 

систематизацию данных из международных баз 

Web of Science, Scopus, КиберЛенинка и 

eLibrary.ru с применением инструмента оценки 

риска смещения ROBINS-I. Проведен 

комплексный анализ эффективности различных 

технологий упрочнения, включая лазерную 

наплавку, дуговую наплавку, термическое 

напыление и комбинированные методы. 

Установлено, что доминирующим механизмом 

износа является абразивное изнашивание с 

параметром удаления материала 0,55–0,7. 

Наиболее эффективными методами повышения 

износостойкости являются лазерная наплавка 
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This article presents a systematic review of modern 

methods for increasing the wear resistance and 

durability of tillage machinery components. Based on 

an analysis of 89 scientific publications (2014–2025), 

wear mechanisms, hardening methods, and 

component restoration are examined. The research 

methodology includes systematization of data from 

the international databases Web of Science, Scopus, 

CyberLeninka, and eLibrary.ru using the ROBINS-I 

bias risk assessment tool. A comprehensive analysis 

of the effectiveness of various hardening 

technologies, including laser cladding, arc cladding, 

thermal spraying, and combined methods, is 

conducted. It is established that abrasive wear, with a 

material removal rate of 0.55–0.7, is the dominant 

wear mechanism. The most effective methods for 

increasing wear resistance include laser cladding of 

composite coatings (reducing wear by 45–67%), two-

layer cladding (increasing service life by 3–3.75 

times), and nanotechnology (increasing wear 

resistance by 100–170 times). Biomimetic design 
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композиционных покрытий (снижение износа на 

45–67%), двухслойная наплавка (увеличение 

срока службы в 3–3,75 раза) и нанотехнологии 

(повышение износостойкости в 100–170 раз). 

Перспективными направлениями развития 

признаны биомиметические подходы к 

проектированию, цифровые двойники, 

градиентные покрытия и высокоэнтропийные 

сплавы. Результаты исследования могут быть 

использованы при разработке новых конструкций 

почвообрабатывающих машин и технологий их 

производства 
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approaches, digital twins, gradient coatings, and 

high-entropy alloys are recognized as promising 

development areas. The research results can be used 

in the development of new tillage machine designs 

and manufacturing technologies 
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Введение. 

Обеспечение долговечности и износостойкости рабочих органов 

почвообрабатывающих машин представляет собой критически важную 

задачу современного сельскохозяйственного машиностроения. 

Интенсивное абразивное взаимодействие с почвой приводит к 

прогрессирующему износу деталей, что существенно снижает 

эффективность агротехнических операций и увеличивает 

эксплуатационные расходы (1; 2; 3; 4). Современные исследования 

демонстрируют, что износ рабочих органов является стохастическим 

процессом, обусловленным изменением структурных размеров и формы 

режущих элементов (5; 6).  

По данным исследований научного коллектива Федерального 

научного агроинженерного центра ВИМ (7) до 80–90% стоимости ремонта 

почвообрабатывающих орудий составляют расходы на запасные части. 

Ресурс серийно выпускаемых культиваторных лап составляет 7–18 га на 

одну деталь, дисковых борон – 8–30 га на один диск (7). При затуплении 

http://dx.doi.org/10.21515/1990-4665-215-042
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лезвия рабочих органов повышается удельная нагрузка на 

сельскохозяйственную машину и, как следствие, увеличивается расход 

топлива и снижается качество обработки почвы. 

Настоящий систематический обзор охватывает публикации в 

международных базах данных Web of Science и Scopus, а также в 

региональных базах данных КиберЛенинка и eLibrary.ru за период 2014–

2025 гг. 

Условия, материалы, методы. 

Поиск литературы осуществлялся по следующим ключевым 

запросам: «повышение износостойкости рабочих органов 

почвообрабатывающих машин», «долговечность рабочих органов», 

«восстановление почвообрабатывающих орудий», «факторы и механизмы 

износа», «теоретическое описание процесса износа», «методы повышения 

износостойкости», «материалы и покрытия для повышения 

износостойкости», «восстановление рабочих органов». Временной 

диапазон охватывал публикации с 2014 по 2025 год включительно. 

Критерии включения отобранных публикаций в обзор:  

1) исследования, посвященные повышению износостойкости 

рабочих органов;  

2) работы по методам восстановления изношенных деталей;  

3) экспериментальные, полевые и численные исследования;  

4) публикации на английском и русском языках.  

Критерии исключения:  

1) публикации вне заданного временного диапазона;  

2) исследования, не относящиеся к почвообрабатывающей технике;  

3) работы без количественных результатов. 

Согласно методологии PRISMA (8), на этапе идентификации было 

выявлено 175 публикаций из четырех баз данных: Web of Science (n=42), 

Scopus (n=38), КиберЛенинка (n=45), eLibrary.ru (n=50) (рисунок 1). После 
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удаления дубликатов для скрининга осталось 175 записей. На основании 

анализа заголовков и аннотаций исключено 38 публикации, не 

соответствующие тематике исследования. Полнотекстовая оценка 

проведена для 137 статей, из которых 48 исключены по причине 

несоответствия методологии, фокуса исследования или временного 

периода. В итоговый синтез включено 89 публикаций, формирующих 

доказательную базу настоящего обзора (рисунок 1). 

 

Рисунок 1 - Алгоритм отбора публикаций по методологии PRISMA  

Для оценки риска систематической ошибки в нерандомизированных 

исследованиях применялся инструмент ROBINS-I (9; 10), охватывающий 

семь доменов смещения. В таблице 1 представлены результаты оценки 

рисков систематической ошибки.  
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Таблица 1 - Оценка риска смещения (ROBINS-I Risk of Bias Assessment) 
Т

и
п

ы
 и

с
с
л

е
д

о
в
а
н

и
й

  

 Смешивание Отбор 
Классифика

ция 
Отклонения 

Пропущенные 

данные 
Измерение Отчётность Общий риск 

Сравнительные Умеренный Умеренный Низкий Низкий Умеренный Низкий Низкий Умеренный 

Индивидуальн

ые случаи 
Серьёзный Серьёзный Умеренный Умеренный Серьёзный Умеренный Умеренный Серьёзный 

Численное 

моделирование 
Низкий Низкий Низкий Низкий Низкий Умеренный Низкий 

Низкий–

умеренный 

Полевые 

испытания 
Умеренный Умеренный Низкий Умеренный Умеренный Низкий Низкий Умеренный 

Лабораторные 

эксперименты 
Умеренный Низкий Низкий Низкий Низкий Низкий Низкий 

Низкий–

умеренный 

Области смещения  

 

Экспериментальные лабораторные исследования демонстрировали 

низкий или умеренный общий риск смещения благодаря контролируемым 

условиям испытаний. Полевые испытания характеризовались умеренным 

риском из-за вариабельности почвенно-климатических условий. 

Численные симуляции (методы конечных элементов и дискретных 

элементов) показали низкий риск смещения в классификации и измерении 

результатов, однако умеренный риск при оценке соответствия моделей 

реальным условиям. Индустриальные кейс-исследования демонстрировали 

серьезный риск смещения из-за недостаточного контроля смешивающих 

факторов и систематической ошибки отбора. Сравнительные исследования 

показали умеренный общий риск смещения, находясь в промежуточном 

положении между строго контролируемыми экспериментами и 

наблюдательными исследованиями. 

 

Результаты и обсуждение. 

1. Факторы и механизмы износа рабочих органов 

почвообрабатывающих машин. 

Рабочие органы почвообрабатывающих машин подвергаются 

преимущественно абразивному износу, вызванному механическим 
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взаимодействием с твердыми частицами почвы, содержащими кварц (SiO₂) 

с твердостью 7,0–11,0 ГПа (11; 2; 3). Исследования демонстрируют, что 

процесс изнашивания характеризуется сложным комплексом физико-

механических процессов, включающих упругопластическую деформацию 

материала, микрорезание и усталостное разрушение поверхностного слоя 

(12; 13; 14). Установлено, что параметр удаления материала варьируется от 

0,55 до 0,7, указывая на доминирование механизма резания над пахающим 

износом (12). 

Согласно классификации, абразивные частицы в почве 

распределяются по размерам: 1–3 мм (13%), 3–5 мм (35%), 5–10 мм (5–

10%), 10–30 мм (10–30%), 30–50 мм (30–50%), 50–100 мм (50–100%) и 

более 100 мм (3). Наибольшую опасность представляют частицы размером 

0,01–0,25 мм, обеспечивающие максимальную интенсивность 

изнашивания (3). 

Процесс износа рабочих органов ПОМ сопровождается механическим 

разрушением кристаллической решетки металла при упругопластической 

деформации (14). Теоретическое обоснование изменения дефектов 

кристаллической решетки показывает, что при контакте материала 

рабочего органа с почвой происходит сдвиг молекул в кристаллической 

решетке под воздействием сил, действующих на рабочий орган (14). 

Зависимость плотности сдвига молекул в кристаллической решетке 

может быть представлена через деформацию кристаллической решетки 

при контакте материала с почвенной частицей и трение металла о 

почвенную частицу с изменением его формы вследствие пластической 

деформации (14). 

Микроскопические исследования показали, что основными 

механизмами абразивного износа материалов рабочих органов являются 

(15): 
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- «Микрорезание» - характеризуется узкими и глубокими бороздками 

на поверхности, особенно интенсивно проявляется для мартенситных 

сталей; 

- «Микроплужение» - образование широких и неглубоких борозд на 

рабочей поверхности; 

- «Откалывание» - разрушение хрупких фаз (карбидов), особенно при 

ударных нагрузках; 

- «Деламинация» - расслоение многослойных наплавочных покрытий 

при наличии больших первичных хрома-карбидов (15). 

Экспериментальные исследования с применением одиночных 

абразивных частиц показали, что с увеличением степени проникновения 

механизм износа последовательно переходит от микроплужения к 

клиновому вытеснению и далее к резанию (13). Глубина внедрения 

абразивной частицы и её размер оказывают значительное влияние на 

интенсивность износа режущих кромок культиваторных лап и лемехов (16; 

12). Анализ распределения плотности износа режущих элементов выявил 

соответствие закону нормального распределения, что подтверждает 

стохастическую природу процесса изнашивания (5; 6). 

Износ рабочих органов носит неравномерный зональный характер. 

Наиболее интенсивному износу подвергаются режущие кромки и носовые 

части лемехов (17; 4; 18). При эксплуатации лемехи приобретают 

волнообразную форму с выступами и впадинами, что способствует 

устранению уплотнительных ядер почвы с абразивными частицами, в 

результате чего интенсивность износа рабочих поверхностей лемехов 

снижается, а их долговечность увеличивается (4). У плужных лемехов 

интенсивность изнашивания носовой части превышает износ остова в 3,2–

3,7 раза для деталей с твёрдостью 22–25 HRC и в 2,5–3,1 раза для 

закалённых на твёрдость 41–44 HRC (19).  
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Экспериментальные исследования показали, что лемехи, 

установленные на первой части культиватора, работают в более жестких 

условиях (15). Интенсивность массового износа элементов лап, 

установленных на первом ряду культиватора, была в среднем в 1,3…1,7 

раза выше по сравнению с лапами, установленными на последующих 

рядах (15). Это объясняется работой передние лап в блокированном 

режиме – деформацией и резанием почвы с неповрежденной структурой, в 

то время как последующие элементы работают с уже частично 

обработанной почвой (15). 

Износ почвообрабатывающих инструментов зависит от комплекса 

взаимосвязанных факторов: материала инструмента, 

противодействующего материала (почвы), окружающей среды (влажность, 

температура) и динамических параметров обработки (20; 21). 

Изнашивающая способность почв определяется гранулометрическим 

составом, твердостью абразивных частиц, влажностью и химической 

агрессивностью почвенного раствора (22). 

Геометрические параметры рабочего органа существенно влияют на 

интенсивность износа: установлено, что наиболее значимым 

геометрическим параметром является угол заострения режущей кромки (5; 

23). Скорость обработки и глубина обработки также демонстрируют 

выраженное влияние на скорость износа: при увеличении скорости 

происходит усиление ударных нагрузок и интенсификация абразивного 

воздействия (24; 25). Моделирование методом дискретных элементов 

(DEM) показало, что контактное давление между почвой и инструментом, 

скорость скольжения и коэффициент трения являются критическими 

факторами износа (2; 26; 27). 

2. Повышение износостойкости и долговечности рабочих органов 

почвообрабатывающих машин. 
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Лазерная наплавка представляет собой высокоэффективный метод 

формирования износостойких покрытий на поверхности рабочих органов 

(1; 28; 29; 30). Современные исследования демонстрируют 

перспективность применения композиционных покрытий Fe60-WC с 

различным содержанием карбида вольфрама (30%, 35%, 40%) для 

ротационных почвообрабатывающих фрез (1). Установлено, что покрытие 

с содержанием 35% WC обеспечивает оптимальное сочетание 

износостойкости и коэффициента трения, демонстрируя потерю массы 1,9 

мг при коэффициенте трения 0,362 (1). 

Полевые испытания подтвердили снижение среднего износа на 

45,75% для фрез с оптимизированной геометрией и композиционным 

покрытием Fe60-WC (35% WC): измеренная потеря массы составила 2,259 

г по сравнению с необработанными фрезами (1). Исследования 

многослойной лазерной наплавки сплавом Fe901 на стали 65Mn показали, 

что многослойные покрытия демонстрируют более высокую 

микротвердость (933,40 HV) по сравнению с однослойными покрытиями 

(807,26 HV) и базовым материалом (259,78 HV) (28). Коэффициент трения 

многослойных покрытий варьировался в диапазоне 0,38-0,58, при этом 

износостойкость превосходила характеристики подложки и однослойных 

покрытий (28). 

Применение покрытий Stellite-6/WC для сельскохозяйственных 

орудий обработки почвы, выполненное при мощности лазерного луча 550 

Вт, скорости подачи 400 мм/мин и расходе порошка 10 г/мин, 

способствовало значительному увеличению долговечности (30). 

Добавление нанопорошка карбида тантала в многокомпонентные 

покрытия позволяет повысить износостойкость на 57-67% по сравнению с 

закаленной сталью 45 при толщине слоя 0,5-0,8 мм, практически не 

изменяя геометрию режущих кромок и обеспечивая эффект 

самозатачивания (30). 
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Наплавка износостойких материалов является наиболее 

распространенным методом упрочнения и повышения износостойкости 

рабочих органов (31; 32; 33). Для этого используются различные 

технологии наплавки с применением электродов марок Т-590, Т-620, Т-

590, ОЗШ-6, ЦН-12М и других (34; 35). 

Исследования показали, что наивысший коэффициент 

износостойкости получен на образцах с наплавленным слоем электродами 

марки Х-5 типа Э350Х26Г2Р2СТ (34). Твердость наплавленного слоя 

достигает 61 HRC при использовании электродов марки Т-590 (Х-5), что 

обеспечивает высокую абразивную износостойкость (34). 

Ларюшиным Н.П. и др. разработана технология двухслойной 

наплавки для восстановления лемехов с лучевидным износом: первый слой 

наплавляется малоуглеродистым электродом (содержание углерода ≤0,1%) 

для обеспечения пластичного подслоя, второй слой – износостойким 

электродом для формирования упрочненной поверхности (32). 

Для улучшенного формообразования двухслойного лезвия Сидоров 

С.А. и соавторы рекомендуют, чтобы износ верхнего слоя несколько 

превышал износ нижнего слоя. Оптимальное отношение линейных износов 

однослойного и двухслойного лезвий должно составлять 1,7–1,8 для 

рабочих органов толщиной 10–12 мм (36). 

Технология восстановления и упрочнения культиваторных лап 

методом газопламенной наплавки обеспечивает равномерный 

упрочняющий слой с использованием самофлюсующихся порошков на 

основе NiCrBSi (33; 37). Исследования порошковых материалов NP 62 и 

NP 60WC20 показали, что средний износ после обработки 80 га составил 

15,12 мм и 16,8 мм соответственно, что в 1,44-1,52 раза ниже, чем у 

эталонных образцов (21,7 мм) (38). Применение материала E520 

продемонстрировало наилучшие результаты со средним износом 6,8 мм 

после обработки 40 га, что в 1,68 раза ниже эталона (11,51 мм) (38). 
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Эффективность восстановления наплавкой характеризуется 

продлением технического срока службы на 130-176% с учетом 

восстановления корректирующих размеров (38). Наработка 

восстановленных лемехов до отказа достигает 30 га, что в 3-3,75 раза 

превышает показатели лемехов, восстановленных традиционными 

методами (8-10 га) (32). 

Перспективным методом является вибродуговая наплавка, при 

которой на режущую кромку рабочего органа наносится 

металлокерамическая паста, которая после высыхания расплавляется с 

образованием электрической дуги керамического покрытия (39). 

Одновременно с формированием покрытия происходит тепловая 

диффузионная насыщение металла рабочего органа легирующими 

элементами (азот, алюминий), входящими в состав пасты, а также 

углеродом (39). 

Исследования образцов упрочненных паст различного состава 

показали, что твердость основного металла, упрочненного вибродуговой 

наплавкой, варьируется в диапазоне 51–56 HRC, а твердость 

наплавленного покрытия составляет 67–72 HRC (39). Для сравнения, 

твердость стали 65Г без упрочнения составляет 44–48 HRC. 

Полевые испытания показали, что упрочненные вибродуговой 

наплавкой лапы культиваторов имеют в среднем на 1,5–1,9 раза большую 

износостойкость по сравнению с неупрочненными серийными лапами (39). 

Перспективным технологическим методом повышения 

износостойкости является плазменная дуговая наплавка твердосплавных 

материалов. Данный метод позволяет создавать покрытия толщиной 0,5–10 

мм с твёрдостью 56–70 HRC. Преимуществами плазменной наплавки 

являются высокая производительность, возможность получения слоёв с 

заданными свойствами и относительно невысокая стоимость процесса (36). 
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Твердосплавные пластины из сплавов типа ВК8 (92% WC, 8% Co) 

обеспечивают высокую твердость и износостойкость, но требуют 

специальных методов крепления к основе рабочего органа (35). 

Металлокерамические покрытия создаются методами напыления и 

обеспечивают переходную зону между твердым сплавом и металлической 

основой (35). 

Исследования показали, что цементированные карбиды (тип ВК) 

демонстрируют сравнимую интенсивность износа несмотря на 

значительные различия в структуре (15). Цементированные карбиды 

используют тонкозернистую структуру (0,8–1,3 μм для образцов A1 и A2) 

с матрицей 20,2% Co-Ni, в то время как более крупнозернистые карбиды 

(2,5–6,0 μм для образцов B) имели твердость выше (1057 HV30 против 986 

HV30) (15). 

Применение высокочастотной наплавки с электродами Т-14-60 и Т-27 

позволяет создавать износостойкие покрытия с твердостью 54,2–55,9 HRC 

(35). Экспериментальные лапы с дискретным износостойким покрытием 

показали в 1,2 раза меньшую интенсивность массового износа и в 2 раза 

меньшую линейную износостойкость по сравнению с наплавкой сплавом 

сормайт (4). 

Высокоскоростное ВЧ-борирование боковых граней в сочетании с 

наплавкой позволяет создавать комбинированные упрочняющие покрытия 

(35). Борированный слой характеризуется высокой твердостью и 

износостойкостью (35). 

Технологии термического напыления, включающие высокоскоростное 

газопламенное напыление (HVOF), плазменное напыление и 

электродуговое напыление, обеспечивают формирование плотных 

износостойких покрытий с высокой адгезией к основе (40; 41; 42). Карбид-

хромовые и вольфрам-карбидные покрытия, нанесенные методом HVOF, 

демонстрируют продление эффективного срока службы молотильных 
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элементов и почвообрабатывающих инструментов за счет создания более 

твердой контактной поверхности (41; 42). 

Исследования покрытий WC-Co/NiCrBSi с добавкой Ni-Al показали, 

что оптимизация скорости нанесения относительно плотности энергии 

позволяет получать покрытия без дефектов и с пониженной пористостью, 

улучшая сопротивление скольжению и коррозионное поведение за счет 

контроля содержания железа в покрытиях (43). Технология напыления с 

последующим оплавлением обеспечивает металлургически связанные 

покрытия, характеризующиеся газо- и жидкостной непроницаемостью (44). 

Применение термического напыления для защиты от коррозии 

включает нанесение покрытий на основе цинка и цинк-алюминия, 

защищающих углеродистые стали и алюминиевые компоненты от 

агрессивного воздействия удобрений и химических обработок (41; 42). 

Восстановительный ремонт изношенных компонентов термическим 

напылением позволяет восстанавливать поверхность до спецификаций 

OEM с последующим нанесением карбидного слоя для предотвращения 

будущего износа (42). 

Исследования показали, что железо-хромистые наплавочные 

материалы различных составов (H1, H2, H5, LH550) демонстрируют 

различную износостойкость в зависимости от содержания углерода и 

хрома (15). Наплавочный материал LH550 с содержанием 6,72% хрома 

продемонстрировал наивысшую твердость (768 HV) и абразивную 

износостойкость (15). Скорость износа LH550 составила 0,833 г/км в 

лабораторных условиях и 2,424 г/км в полевых условиях, что на 51% и 

41% лучше соответственно по сравнению с неупрочненной сталью (15). 

Установлено, что износостойкость наплавочных материалов 

определяется не только твердостью, но и морфологией микроструктуры 

(15). Наплавочные материалы с рыбовидной и род-подобной структурой 
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дендритов показали высокую износостойкость благодаря наличию 

аустенитной фазы и дисперсных фаз карбидов (15). 

Наиболее эффективным подходом является применение 

комбинированных упрочняющих покрытий, состоящих из четырех 

конструктивно-технологических элементов: твердосплавная пластина, 

твердосплавное (боридное) композиционное покрытие, 

металлокерамическое или электроискровое покрытие, объемная закалка 

исходного материала (35). 

Оптимизированные конструкции включают (35): 

- ВЧ-наплавку истинной грани сплавом Т-14-60 в сочетании с 

электроискровым покрытием боковых граней сплавом ВК8; 

- ВЧ-наплавку истинной грани сплавом Т-27 в сочетании с 

борированием боковых граней и электроискровым покрытием ВК8. 

Упрочненные комбинированным покрытием и ВЧ-закалкой долота 

развивают в 1,5–2 раза более высокую износостойкость по сравнению с 

контролем (35). 

Упрочнение рабочих поверхностей лемехов наплавкой по бионически 

обоснованным параметрам показало повышение эффективности, 

долговечности и снижение тягового сопротивления культиваторных лап и 

сошников (45; 46). Биомиметические неровные поверхности, модификация 

материалов почвообрабатывающих компонентов, биомиметический 

электроосмос и гибкие элементы представляют собой перспективные 

направления для снижения налипания почвы (47; 48). 

Глубокая криогенная обработка представляет собой эффективный 

метод улучшения механических характеристик инструментальных сталей, 

включая износостойкость, твердость и усталостную прочность (31; 49; 50). 

Метод позволяет повысить прочность режущей кромки без применения 

дорогостоящих наплавочных операций (51). Предел текучести 

Al0,6CrFe2Ni2HEA постепенно увеличивался с увеличением времени 
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криогенной обработки, а максимальный предел текучести сплава, 

подвергнутого 48-часовой криогенной обработке, составил 390 МПа, что 

на 39,3% выше, чем у литого. Повышение механических свойств 

материала после криогенной обработки было связано с измельчением 

зерен и большим выделением нанофаз, а также с появлением поперечного 

скольжения и дефектов упаковки, вызванных криогенной обработкой (50). 

Метод сочетания обработки дробью и последующей ионной 

имплантации азота для стали 16Cr3NiWMoVNbE продемонстрировал 

увеличение максимального остаточного сжимающего напряжения 

приповерхностного слоя на 11,8-15,9% по сравнению с обработкой только 

дробью (52). 

Обоснование применения криогенной обработки в сочетании с 

прерывистой наплавкой износостойкими материалами для повышения 

долговечности рабочих органов культиваторов показало перспективность 

данного подхода (31). Глубокая холодная обработка способствует 

измельчению микроструктуры наплавленного слоя и повышению его 

однородности (50). 

Вибрационная упрочняющая обработка режущих элементов 

почвообрабатывающих рабочих органов обеспечивает повышение 

твердости обработанной поверхности лезвия лемеха на 22-35% за счет 

формирования более мелкозернистой и равномерной микроструктуры (5; 

53). Разработана технология восстановления культиваторных лап и 

плужных лемехов на основе вибрационного упрочнения их режущих 

элементов, обеспечивающая увеличение наработки до предельного 

состояния (53). 

Экспериментальные исследования вибрационной обработки рабочих 

поверхностей лемехов позволили определить оптимальные параметры 

обработки: частота колебаний инструмента 1400 мин⁻¹, амплитуда 

колебаний 0,5 мм, время обработки 20 с (6). При воздействии 
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вибрационной обработки микроструктура становится более 

мелкозернистой и равномерной, что способствует упрочнению 

обработанной поверхности (5). 

Технологические способы повышения долговечности и 

износостойкости лемехов включают комбинированное применение 

вибрационного упрочнения и наплавки, что обеспечивает синергетический 

эффект повышения эксплуатационных характеристик (53). Данный подход 

позволяет реализовать эффект самозатачивания режущей кромки в 

процессе износа за счет формирования двухфазного профиля. 

3. Современное состояние теоретического описания процесса износа. 

Метод дискретных элементов получил широкое распространение в 

исследованиях взаимодействия почвы с рабочими органами благодаря 

возможности моделирования движения отдельных частиц почвы и учета её 

дискретной природы (26; 27; 54; 55). DEM позволяет прогнозировать 

профили борозд, профили нарушенной поверхности почвы, разрушение и 

разрыхление почвы, параметры возмущения и реакционные силы без 

необходимости проведения дорогостоящих полевых испытаний (26; 27). 

Калибровка параметров почвенной модели для DEM-симуляций 

включает определение коэффициентов восстановления, Пуассона, модуля 

сдвига и плотности частиц почвы (56; 57; 54). Для черноземной почвы 

легкосуглинистого, среднесуглинистого и тяжелосуглинистого 

мехсоставов Мударисовым С.Г и Фархутдиновым И.М. для контактной 

модели Герца-Миндлина установлены следующие калиброванные 

параметры: модуль Юнга Е =1,3…1,5 МПа, коэффициент Пуассона 

ν=0,26…0,4, Коэффициент статического трения почвы о почву fst 

=0,25…0,7, коэффициент динамического трения почвы о почву 

fd=0,15…0,35, диаметр частиц d=1…10 мм, коэффициент статического 

трения fst.k=0,3…0,9, коэффициент динамического трения fd.k=0,1…0,2 и 

поверхностная энергия для модели сцепления (адгезии) 
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Джонсана_Кендала-Робертса Gs=270…400 Дж/м
2
 (58; 59). При этом 

установлено, что наиболее значимым калибровочным параметром, 

влияющим как на энергетические характеристики и качественные 

показатели обработки почвы, является поверхностная энергия модели 

сцепления (адгезии) Джонсана_Кендала-Робертса Gs (58; 59) . 

В общем верификация DEM-моделей проводится путем сравнения 

симуляционных результатов с экспериментальными данными по углу 

естественного откоса, сопротивлению внедрению в почву пенетрометров 

или по тяговому сопротивлению рабочих органов (56; 55; 60). 

Оптимизация модели для экономии вычислительного времени включает 

выбор формы и размера DEM-частиц (55). 

Метод конечных элементов применяется для моделирования 

напряженно-деформированного состояния рабочих органов, 

прогнозирования тяговых, вертикальных и боковых сил при различных 

режимах работы (61; 12; 13). Трехмерные FEM-модели взаимодействия 

почвы с рабочим органом позволяют прогнозировать силы для различных 

почвенных условий и параметров обработки (61). 

Численное моделирование абразивного износа почвообрабатывающих 

инструментов методом FEM основано на моделировании процесса 

царапания одиночной песчаной частицей поверхности инструмента с 

установленной скоростью (12; 13). Потери материала с поверхности 

инструмента оцениваются с использованием классической теории 

микропахания и концепции коэффициента удаления материала (12; 13). 

Критерий повреждения при сдвиге, основанный на деформациях 

разрушения и эквивалентном пластическом смещении, применяется для 

удаления элементов в FEM-модели (13). Модель воспроизводит три 

режима абразивного износа: микропахание, клиновое вытеснение и 

резание, наблюдаемые в экспериментах (12; 13). Параметр степени износа 
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служит мерой износа, а степень проникновения количественно определяет 

относительную глубину борозды и, следовательно, тяжесть контакта (13). 

Современные исследования демонстрируют перспективность 

применения комбинированных численных подходов, сочетающих DEM 

для моделирования поведения почвы и FEM для анализа напряженно-

деформированного состояния рабочих органов (62). В исследовании 

Forsström D. и Jonsén P. (62) представлен комплексный подход к 

моделированию процесса износа. Для анализа несущей конструкции 

применяется метод конечных элементов, а поведение сыпучей среды 

моделируется с помощью метода дискретных элементов. Взаимодействие 

между этими двумя компонентами описывается через контактную модель. 

Коэффициент износа в законе Арчарда была откалибрована на основе 

экспериментальных данных, полученных при испытаниях в вращающемся 

барабане с использованием репрезентативной пары материалов. После 

калибровки модель износа была верифицирована в ходе 

полномасштабного моделирования, которое показало хорошую 

сходимость с данными натурных измерений. 

Предлагаемый подход является высокоэффективным и для 

моделирования износа рабочих органов почвообрабатывающих машин. В 

этом случае метод конечных элементов позволяет оценить напряженно-

деформированное состояние лемеха, отвала или другого органа, а метод 

дискретных элементов — смоделировать взаимодействие с почвенной 

средой (агрегатами, частицами почвы). Это позволяет прогнозировать 

интенсивность износа и ресурс деталей на этапе проектирования. 

Сравнительная оценка дискретных элементов и вычислительной 

гидродинамики для энергетической оценки культиваторных рабочих 

органов показала, что результаты, полученные во время реальных 

экспериментов в почвенном канале, хорошо коррелируют с численными 

симуляциями (63). 
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Метод гладких частиц (SPH) применяется для оптимизации геометрии 

рабочих органов с целью снижения энергопотребления (1). Модель 

взаимодействия фрезы с почвой на основе SPH позволила оптимизировать 

геометрию фрезы, снизив энергопотребление до 0,106 кВт с погрешностью 

симуляции всего 2,83% (1). Интеграция структурной оптимизации на 

основе численного моделирования с экспериментальным упрочнением 

поверхности обеспечивает синергетический эффект повышения 

долговечности и эффективности (1). 

Подходы на основе цифровых двойников для сельскохозяйственной 

техники представляют собой перспективное направление, обеспечивающее 

прогнозирование поведения и оптимизацию конструкции рабочих органов 

(64; 58). Цифровой двойник интегрирует данные численного 

моделирования (FEM, DEM), результаты экспериментальных испытаний и 

эксплуатационные данные для создания виртуальной модели, 

позволяющей прогнозировать износ и оптимизировать стратегии 

технического обслуживания (64). 

4. Материалы и покрытия для повышения износостойкости. 

Базовыми материалами для изготовления рабочих органов 

почвообрабатывающих машин служат среднеуглеродистые и пружинные 

стали (65Mn, 60Si2Mn, 28MnB5, сталь 45) (1; 28; 65). Материал 28MnB5, 

применяемый для компонентов сельскохозяйственного назначения, 

подвергается различным методам нанесения покрытий для улучшения 

трибологических свойств (65). Исследования показали, что дуговое 

покрытие значительно улучшает трибологические характеристики по 

сравнению с образцами без покрытия (65). 

Анализ материалов рабочих органов ведущих зарубежных фирм 

(Kverneland, Lemken, Kuhn, Vogel&Noot и др.) показал, что в их 

производстве используются низко- и среднеуглеродистые борсодержащие 



Научный журнал КубГАУ, №215(01), 2026 год 
 

http://ej.kubagro.ru/2026/01/pdf/42.pdf  

20 

легированные стали с пределом прочности σв = 1700–2000 МПа, 

относительным удлинением δ = 7,0–9,5% и твёрдостью 49–56 HRC (36). 

В отечественных рабочих органах используются следующие 

материалы основы (36; 7): 

1) Сталь 30ХГСА, термообработанная на твёрдость 47–50 HRC с 

пределом прочности σв = 1590–1650 МПа и коэффициентом относительной 

износостойкости 1,05–1,08; 

2) Борсодержащая сталь 30MnB5 твёрдостью 51–53 HRC с 

коэффициентом относительной износостойкости 1,42–1,57 и пределом 

прочности σв = 1730–1810 МПа; 

3) Сталь 25ХГТЮР, имеющая в 1,7–1,8 раза большее временное 

сопротивление разрыву по сравнению со сталью 65Г. 

Аустенизированный ковкий чугун (ADI) производится посредством 

многостадийной термообработки высокопрочного чугуна, обеспечивая 

двойную прочность по сравнению с обычным высокопрочным чугуном 

при заданной ударной вязкости (66). ADI обладает хорошими 

демпфирующими свойствами и отличной износостойкостью, что позволяет 

применять его для кулачковых дорожек зерноуборочных комбайнов без 

смазки (66). 

Листовой материал Hardox, закаленный и оптимизированный 

специально для износостойкости, обеспечивает твердость до 500 HB и 

предел прочности при растяжении до 1500 Н/мм², что гарантирует 

многократное увеличение срока службы по сравнению с обычными типами 

стали в условиях абразивного износа (66). Применение Hardox для нижней 

стороны питающего канала измельчителя кормов обеспечивает надежную 

защиту от износа (66). 

Перспективной альтернативой наплавочным технологиям является 

изготовление долот чизельных плугов из нелегированного высокопрочного 

чугуна с отбеленной рабочей поверхностью (67). Преимущества литейной 
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технологии заключаются в достижении высокой твердости и 

износостойкости рабочей поверхности за счет высокого содержания в 

отбеленном слое эвтектических карбидов с твердостью 800 HB и 

получении практически готовой детали с упрочненной поверхностью в 

состоянии после литья (67). 

Стойкость к ударным нагрузкам и скалыванию отбеленного слоя 

обеспечивается широкой переходной зоной от структуры чистого белого 

чугуна к структуре графитизированного чугуна основного тела отливки. 

Рекомендуемый химический состав чугуна: C 3,5%, Si 1,47%, Mn 0,52%, 

Mg 0,49%, S 0,02%, Cr 0,05% с температурой заливки 1360–1430°C (67). 

Исследования показали, что ресурс экспериментальных лемехов из 

высокопрочного чугуна ВЧ50 с твердостью 433 HV примерно в 3 раза 

выше ресурса серийного лемеха из стали (12 га операционного времени 

против 4,7 га) (68). 

Разработка и применение композиционных покрытий на основе 

карбидов вольфрама (WC), хрома (Cr₃C₂) и титана (TiC) демонстрирует 

хорошие результаты в повышении износостойкости рабочих органов ПОМ 

(1; 69; 70; 30). Покрытия Fe-WC с содержанием WC от 30% до 40%, 

нанесенные методом лазерной наплавки, показали, что оптимальное 

содержание 35% WC обеспечивает наилучшее сочетание износостойкости 

и коэффициента трения (1). 

Наиболее эффективными упрочняющими материалами являются 

железо-хром-бористые сплавы серии ПГ-ФБХ-6-2, ПР-ФБЮ-1-4, ПР-

ФБЮ-2-3-Ф с твёрдостью 56–63 HRC. Результаты лабораторных 

испытаний материалов показывают значительное повышение 

износостойкости этих сплавов по сравнению с традиционными 

конструкционными сталями (7). 

Применение твердосплавных покрытий с добавками литого карбида 

вольфрама (WC) обеспечивает повышение относительной износостойкости 
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на 27–48% по сравнению с серийными железоуглеродистыми сплавами и в 

3,7–4,6 раза выше по сравнению с конструкционными сталями (36). 

Композиционные покрытия Stellite-6/WC характеризуются высокой 

твердостью (55-70 HRC) и исключительной абразивной стойкостью 

благодаря высокому содержанию хрома, углерода, а иногда вольфрама или 

ванадия (30; 71). Исследования показали, что карбидные частицы 

обеспечивают твердость до 2000 VH при внедрении в матрицу (72). 

Нанокомпозитные материалы находят все более широкое 

применение в производстве сельскохозяйственного оборудования 

благодаря улучшенным характеристикам изгиба, сопротивлению износу и 

коррозии (73; 74). Нанокомпозиты легче обычных композитов примерно на 

22% из-за меньшей потребности в армирующих материалах (73). 

Инновационным решением является применение эпоксидно-

гравийных композитов для упрочнения лемехов с возможностью 

восстановления деталей, имеющих радиальный износ (17). Оптимальный 

состав композита – соотношение эпоксидного соединения к гравийному 

наполнителю 50:50 (17). 

Использование гравийной крошки с дисперсностью частиц гравия 

1,75 мм в эпоксидной смоле показало наилучшую стойкость к абразивному 

износу (17). Оптимальные эксплуатационные характеристики композита 

обусловлены высокой адгезией частиц к эпоксидной основе, 

предотвращающей их расслоение и обеспечивающей стабильность 

покрытия при механических и ударных нагрузках (17). 

Исследования, проведенные Кравченко И.Н и др., подтверждают, что 

применение эпоксидно-гравийных композитов позволяет повысить 

износостойкость покрытий в 2,8 раза по сравнению с заводскими деталями 

(17). Это позволяет увеличить срок службы лемехов, работающих в 

условиях интенсивного абразивного трения (17). 
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Применение полимерных материалов, в частности 

ультравысокомолекулярного полиэтилена низкой плотности, для рабочих 

органов культиваторов обеспечивает снижение тягового сопротивления на 

18,28% (25; 75). Исследования рабочего органа с полимерными 

материалами показали уменьшение тягового сопротивления до 7,6 кН, что 

на 18,28% ниже по сравнению с рабочими органами, оснащенными 

плоской и криволинейной лапами (25). 

Полимерные материалы характеризуются более низкой 

поверхностной энергией, что способствует снижению налипания почвы и 

коэффициента трения (47). Модификация материалов 

почвообрабатывающих компонентов полимерными покрытиями 

представляет собой важный метод снижения налипания почвы и 

межфазного трения (47). Однако применение полимеров ограничено более 

низкой износостойкостью по сравнению с металлическими материалами, 

что требует дальнейшего совершенствования композиционных решений 

(25; 75). 

5. Восстановление изношенных рабочих органов. 

Восстановление изношенных рабочих органов 

почвообрабатывающих машин осуществляется различными методами 

наплавки, обеспечивающими восполнение потерянного металла и 

формирование упрочненного поверхностного слоя (11; 32; 33; 76). 

Традиционные методы восстановления включают оттяжку носка за счет 

запаса металла, однако данный подход применим только для лемехов, 

сохранивших установленную геометрию носовой части (77). 

Наплавка является наиболее распространенным методом 

восстановления изношенных рабочих органов (3; 34). Применяются те же 

электродные материалы, что и для первичного упрочнения: Т-590, Т-620, 

Т-27, ОЗШ-6-2, ЦН-1 и др. (78). 
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Двухдуговое газопламенное напыление позволяет создавать покрытия 

толщиной 1,5–35 мкм с твёрдостью 512 HV для закалённой стали и 1020 

HV для карбидов хрома. Плазменно-дуговая наплавка с переносом 

материала обеспечивает получение покрытий толщиной 0,5–10 мм с 

твёрдостью до 70 HRC и 1200 HV (79). 

Двухслойная наплавка представляет собой прогрессивный метод, 

позволяющий обеспечить восстановление изношенной области рабочей 

поверхности с учетом размеров износа, определяемых 

гранулометрическим составом почвы, скоростью движения агрегата и 

материалом лемеха (77; 32). Первый слой наплавляется электродом с 

малоуглеродистым стержнем (содержание углерода ≤0,1%), обеспечивая 

пластичный подслой, предотвращающий растрескивание и 

обеспечивающий достаточную ударную вязкость (77; 32). 

Второй поверхностный слой, наплавляемый износостойким 

электродом, обеспечивает высокую твердость и износостойкость при 

толщине, меньшей толщины первого слоя (77; 32). Наличие пластичного 

подслоя обеспечивает невысокий уровень остаточных напряжений и 

снижает склонность к трещинообразованию поверхностного 

износостойкого слоя (77). 

Использование теплоупрочненных компенсирующих элементов для 

восстановления импортных лемехов позволяет продлить срок службы 

деталей без полной замены (80). Элементы крепятся к изношенной 

поверхности и обеспечивают восстановление рабочей геометрии (80). 

Разработаны технологические линии восстановления 

культиваторных лап методом газопламенного напыления, отличающиеся 

от традиционных подходов применением самофлюсующихся порошков и 

оптимизированных режимов обработки (81; 33; 82). Технология 

восстановления и упрочнения лап культиватора методом газопламенной 
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наплавки обеспечивает равномерный упрочняющий слой с 

использованием материалов на основе никеля и хрома (83). 

Экономическая эффективность технологий восстановления 

характеризуется снижением затрат на замену изношенных деталей и 

уменьшением времени простоя техники в период выполнения сезонных 

полевых работ (84; 30). При наплавке основная часть затрат приходится на 

материалы, включая защитный газ и упрочняющие материалы, а также на 

трудозатраты (38). 

Восстановление рабочих органов экономически целесообразно при 

соблюдении условия: стоимость восстановления не превышает 50–60% 

стоимости новой детали при обеспечении не менее 70% ресурса новой 

детали (3). Применение современных технологий восстановления, таких 

как эпоксидно-гравийные композиты и дискретные износостойкие 

покрытия, позволяет достичь повышения износостойкости в 1,7–2,8 раза 

по сравнению с серийными деталями (17; 4). Так при восстановлении 

культиваторных лап с применением упрочняющей наплавки сплавом ПГ-

ФБХ-6-2 толщиной 1,7–2,0 мм на носок и 0,7–1,4 мм на лезвие крыльев 

ресурс деталей увеличился до 30–37 га на тяжёлых почвах и 17–23 га на 

лёгких почвах, что в 2,5–2,8 раза превышает ресурс серийных аналогов 

(85). 

Экспериментальные исследования показали, что характер износа 

новых и наплавленных лемехов существенно зависит от типа 

конструктивного решения и используемых материалов (15). При 

использовании лемехов, упрочненных цементированными карбидами и 

наплавочными покрытиями, механизм износа носит многоступенчатый 

характер (15). Количество износа в областях с цементированными 

карбидами было меньше, чем в зонах основного материала, что указывает 

на высокую эффективность упрочнения (15). 
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Эффект восстановления наплавкой выражается в продлении 

технического срока службы на 130-176% при учете восстановления 

корректирующих размеров (84; 38). Сопоставление затрат на 

восстановление с затратами на приобретение новых деталей 

демонстрирует экономическую целесообразность применения 

современных технологий восстановления при условии обеспечения 

достаточной наработки восстановленных деталей (84; 38; 30). 

Технологии аддитивного производства металлов дополняют 

платформы цифровых двойников, обеспечивая возможность быстрого 

локального ремонта и упрочнения поврежденных компонентов на основе 

прогнозных оценок состояния (64). Металлические процессы аддитивного 

производства, включая направленное энергетическое осаждение и 

лазерную наплавку, обеспечивают возможность восстановления потерь 

материала, улучшения поверхностных свойств и продления срока службы 

компонентов без необходимости полной замены (64). 

Интеграция систем автоматизированного контроля работы 

почвообрабатывающих агрегатов на основе тензометрического 

оборудования, систем технического зрения и ультразвукового 

сканирования позволяет создавать системы мониторинга в реальном 

времени (86). Функционирование этих систем основывается на работе 

нейронных сетей, связывающих показатели качества обработки почвы и 

кинематические параметры орудия в единый комплекс (86). 

Разработка многофункциональных покрытий, сочетающих высокую 

износостойкость, коррозионную стойкость и антиадгезионные свойства, 

представляет собой актуальное направление исследований (69; 87; 43). 

Высокоэнтропийные сплавы (HEA), наносимые методами термического 

напыления, демонстрируют хорошее сочетание механических и 

коррозионных свойств благодаря эффектам высокой энтропии, 

замедленной диффузии, искажения решетки и эффекту смешивания (40). 
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Покрытия CoCrFeNiAl, синтезированные на Ti6Al4V методом 

лазерной наплавки, показали, что введение алюминия способствует 

измельчению микроструктуры, улучшению микроструктурной 

стабильности и повышению коррозионной и износостойкости в 

коррозионных средах (69). Пассивная пленка формируется более быстро 

на поверхности покрытия и демонстрирует более высокую стабильность 

при введении алюминия (69). 

Градиентные покрытия, характеризующиеся плавным изменением 

состава и свойств по толщине, обеспечивают оптимальное сочетание 

адгезии к основе, высокой поверхностной твердости и промежуточного 

слоя с согласованными механическими свойствами (87; 28). Многослойная 

лазерная наплавка позволяет формировать толстые покрытия послойным 

нанесением, обеспечивая материалы с однородным составом и низким 

уровнем сегрегации (28). 

Систематический анализ 89 публикаций, отобранных по 

методологии PRISMA, выявил значительный прогресс в методах 

повышения износостойкости и восстановления рабочих органов 

почвообрабатывающих машин в период 2014–2025 гг. Оценка риска 

систематической ошибки по инструменту ROBINS-I показала 

преимущественно умеренный риск смещения для большинства типов 

исследований, что свидетельствует о достаточной методологической 

надежности доказательной базы. 

Наиболее перспективными технологиями упрочнения являются 

лазерная наплавка композиционных покрытий на основе Fe-WC и Stellite-

WC, обеспечивающие снижение износа на 45-67% по сравнению с 

необработанными поверхностями (1; 30). Синергетический эффект 

достигается при комбинировании структурной оптимизации рабочих 

органов на основе численного моделирования (SPH, DEM, FEM, CFD) с 

передовыми методами поверхностного упрочнения (1; 26; 12; 60). 
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Восстановление изношенных деталей двухслойной наплавкой с 

использованием пластичного подслоя и износостойкого поверхностного 

слоя обеспечивает продление срока службы в 3-3,75 раза по сравнению с 

традиционными методами при экономической эффективности 130-176% 

(32; 38). Важным направлением является развитие биомиметических 

подходов к проектированию, основанных на изучении адаптаций роющих 

животных и обеспечивающих комплексное снижение сопротивления, 

износа и налипания почвы (88; 47; 38). 

Применение нанотехнологий открывает перспективы увеличения 

износостойкости в 100-170 раз за счет формирования нанокристаллических 

структур с размером зерна менее 100 нм (73; 74). Интеграция цифровых 

двойников, систем мониторинга в реальном времени и аддитивного 

производства формирует основу для интеллектуального управления 

жизненным циклом почвообрабатывающей техники (86; 64). 

Выводы. 

Результаты систематического обзора позволяют сформулировать 

следующие основные выводы: 

1. Механизмы износа: Абразивное изнашивание рабочих органов 

представляет собой сложный стохастический процесс, подчиняющийся 

закону нормального распределения, с доминированием механизма резания 

над микропаханием (коэффициент удаления материала 0,55-0,7). 

2. Лазерная наплавка: Композиционные покрытия Fe60-WC с 

содержанием 35% WC обеспечивают оптимальное сочетание 

износостойкости и коэффициента трения, снижая средний износ на 45,75% 

в полевых условиях. Многослойная лазерная наплавка сплавом Fe901 

повышает микротвердость до 933 HV, что в 3,59 раза выше базового 

материала. 

3. Дуговая наплавка: Технология двухслойной наплавки с 

пластичным подслоем и износостойким поверхностным слоем 
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обеспечивает наработку восстановленных лемехов до 30 га, что в 3-3,75 

раза превышает показатели традиционных методов. Экономическая 

эффективность восстановления составляет 130-176%. 

4. Термическое напыление: HVOF-покрытия на основе WC и Cr₃C₂ 

обеспечивают продление срока службы рабочих органов 

почвообрабатывающих машин, создавая поверхности с твердостью до 2000 

VH. 

5. Численное моделирование: Интеграция методов DEM и FEM 

позволяет прогнозировать силовые параметры, профили обработки и 

износ, обеспечивая оптимизацию конструкции без дорогостоящих полевых 

испытаний. 

6. Биомиметический дизайн: Применение бионически обоснованных 

геометрических параметров и поверхностных структур обеспечивает 

комплексное снижение тягового сопротивления, износа и налипания 

почвы. 

7. Специальные методы: Криогенная обработка и вибрационное 

упрочнение повышают твердость поверхностного слоя на 22-35%, 

способствуя формированию мелкозернистой микроструктуры. 

8. Нанотехнологии: Нанокристаллические покрытия с размером 

зерна около 100 нм демонстрируют износостойкость в 100-170 раз выше 

обычных покрытий при снижении коэффициента трения на 40-50%. 

9. Цифровые технологии: Платформы цифровых двойников в 

сочетании с аддитивным производством и системами мониторинга 

формируют основу для прогнозирования износа и оптимизации стратегий 

технического обслуживания. 

10. Комплексный подход: Наибольший эффект достигается при 

комбинировании структурной оптимизации, передовых методов 

упрочнения и интеллектуальных систем управления жизненным циклом. 
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