УДК 624.131	UDC 624.131
ВЫЧИСЛЕНИЕ ХАРАКТЕРИСТИК МИКРО- СТРУКТУРЫ ГРУНТА В ОПЫТЕ С КОМ- ПРЕССИОННЫМ СЖАТИЕМ ОБРАЗЦА	THE CALCULATION OF THE SOIL MICRO- STRUCTURE CHARACTERISTICS IN CON- SOLIDATION TESTING OF SAMPLE
Ляшенко Павел Алексеевич к. т. н., профессор Кубанский государственный аграрный универси- тет, Краснодар, Россия	Lyashenko Pavel Alekseevich Dr.Sc. (Tech.), Prof. Kuban State Agrarian University, Krasnodar, Russia
Денисенко Виктор Викторович к. т. н., доцент Кубанский государственный технологический уни- верситет, Краснодар, Россия	Denisenko Viktor Viktorovich Dr.Sc. (Tech.), Ph.D Kuban State Technology University, Krasnodar, Rus- sia
Описан способ определения микроструктурных характеристик глинистого грунта по результатам компрессионного сжатия образца при постоянно возрастающем давлении. Приведены значения ха- рактеристик 12-ти разных грунтов. Ключевые слова: КОМПРЕССИОННОЕ СЖАТИЕ, ЦИКЛИЧНОСТЬ СКОРОСТИ ДЕФОРМАЦИИ, МИКРОСТРУКТУРА, ВЗАИМОДЕЙСТВИЕ ГЛИНИСТЫХ ПОВЕРХНОСТЕЙ, УПРУГАЯ ДЕФОРМАЦИЯ	The method of determination of clay soil microstruc- ture characteristics over the results on consolidation testing with constant rate loading has been described. The characteristics of 12 different soils are presented. Keywords: CONSOLIDATION TESTING, DFOR- MATION RATE CYCLING, MICROSTRUCTURE, CLAY SURFACES INNTERACTION, ELASTIC DEFORMATION

Введение

Компрессионное сжатие образца применяется для определения сжимаемости грунта и почвы. Сжимаемость грунтов является следствием переупаковки частиц при всестороннем сжатии [1]. «При компрессионном сжатии одновременно с объемными деформациями развиваются и сдвиговые деформации» [2]. Эти наблюдения не учитываются при описании деформаций грунтовых тел, а закон уплотнения грунта закрепляет представление об однородном изотропном уменьшении объема грунтового тела.

На самом деле, грунт не является однородным и изотропным веществом. При всестороннем сжатии в нем «...уплотнение идет в основном за счет взаимного смещения структурных элементов и их более плотной упаковки» [3]. И вообще, «...деформации в естественных глинах... вызываются главным образом относительным перемещением и переориентацией отдельных частиц» [4]. Например, изменение скорости ползучести глины при

Научный журнал КубГАУ, №45(1), 2009 года

сдвиге вызвано тем, что «...в отдельных участках... происходит разрушение связей в контактах между частицами и местная перестройка структуры. Перестраивающиеся зоны временно разгружаются, и усилие перераспределяется на соседние участки» [5].

Действительно, в каждый момент нагружения грунтового тела можно выделить группы частиц внутри него и на границах, которые находятся в одинаковом напряженно-деформированном состоянии и, следовательно, одновременно испытывают относительное перемещение и переориентацию. Это отражается на границах тела в виде неравномерного изменения его реакции и может регистрироваться приборами.

Испытание образца грунта по специальной технологии – при постоянно возрастающем сжимающем давлении и при непрерывном измерении деформации [6] – позволяет выявить эффект ступенчатого развития деформации с закономерным изменением параметров ступеней. Использование этих параметров при изучении микроструктуры предлагается в настоящей статье.

Компрессионные испытания с постоянно возрастающим давлением

Исследования проводились с помощью автоматического компрессионного прибора с постоянно возрастающим давлением АКП-6Н конструкции СевКавТИСИЗа, обеспечивающим:

– испытание образов грунтов сечением 40 и 60 см²;

 приложение постоянно возрастающего давления с любой скоростью от 1 до 1000 кПа/ч до любого конечного значения от 200 до 1500 кПа;

 – замачивание образца при любом значении сжимающего давления от 0 до 1500 кПа;

 выдерживание образца до стабилизации его деформации при любом сжимающем давлении от 0 до 1500 кПа; – регистрацию деформации образца в электронной памяти с дискретностью 0,005 мм через каждые 10 кПа давления на образец и выдачу результатов на дисплей прибора и внешнее ПЭВМ.

В данном случае, испытания проводились с приложением постоянно возрастающего давления и с выдерживанием образца до стабилизации его деформации при конечном сжимающем давлении. Осадка образца регистрировалась непрерывно на обоих этапах.

Параметры компрессионного сжатия

Компрессионное сжатие при постоянно возрастающей нагрузке позволяет измерить увеличение деформации образца с шагом $\Delta s = 0,005$ мм с регистрацией сжимающего давления на каждом шаге. Вычисленная скорость изменения осадки $\Delta s / \Delta p = V(p)$ изменяется циклически (Рисунок 1) при монотонном увеличении давления p = Bt, где B- постоянный параметр режима нагружения образца, t - время с начала нагружения. В примере на Рисунке 1 B = 5,787 Па/с.

Цикл состоит из восходящей ветви, на которой скорость деформации увеличивается и достигает значений $V_{t,i}$, и нисходящей, на которой она уменьшается и достигает значений $V_{b,i}$, где i - номер цикла. Для грунта ненарушенной структуры значения $V_{t,i}$ на восходящих ветвях достигают максимума через n_c циклов: $\max\{V_{t,i}\} = V_{t,nc}$, $(i = 1...n_c)$. Соответствующее ему значение давления называют «структурной прочностью» [1] S_{str} . При $p > S_{str}$ значения $V_{t,i}$ убывают, в целом, с ростом давления (Рисунок 1).

http://ej.kubagro.ru/2009/01/pdf/03.pdf

Рисунок 1 – Изменение скорости деформации образца № 66 при постоянной скорости увеличения давления

Для обработки данных испытаний были взяты 12 образцов разных грунтов, характеристики физических свойств которых приведены в Таблице 1.

Приращения внешнего давления, соответствующие ветвям цикла деформации, обозначим через $\Delta p_{e,i}$ (на нисходящей ветви) и $\Delta p_{r,i}$ (на восходящей ветви), причем $\Delta p_{e,i} = B \Delta t_{e,i}$, а $\Delta p_{r,i} = B \Delta t_{r,i}$, где $\Delta t_{e,i}$ и $\Delta t_{r,i}$ - длительность протекания нисходящей и восходящей ветвей, соответственно.

Обозначим осадку образца на нисходящей ветви через $\Delta s_{e.i}$, а на восходящей ветви через $\Delta s_{r.i}$. По результатам испытаний были рассчитаны значения n_c , $\Delta s_{e.i}$, $\Delta s_{r.i}$, $V_{t.i}$, $V_{b.i}$ (Таблица 2). На интервале давлений 0

		-					
Номер	Глубина	Влаж-	Объем-	Коэффи-	Число	Показа-	Бытовое
образ-	отбора	ность	ный вес	циент по-	пластич-	те-	давление
ца	образца	грунта	грунта	ристости	ности	кучести	
	d	W	g	е	I _P	IL	s g
	м	%	kN/m3		%		kPa
117a	8,5	23	2,06	0,600	7	0,43	172
117б	8,5	23	2,05	0,608	7	0,43	171
117в	8,5	23	2,04	0,616	7	0,43	170
117г	8,5	23	2,05	0,608	7	0,43	171
97	7,0	25	2,04	0,661	15	-0,07	140
98	7,0	25	2,04	0,661	15	-0,07	140
99	7,0	25	2,04	0,661	15	-0,07	140
66	3,0	27	1,94	0,768	13	< 0	57
74	1,5	26	1,82	0,876	14	< 0	27
75	7,0	24	1,94	0,726	13	0,15	133
76	8,5	25	1,97	0,720	16	< 0	164
77	3,0	23	1,80	0,838	10	0	53
78	5,0	21	2,00	0,634	11	-0,1	98
86a	4,0	43	1,85	1,242	26	0,23	73
89	8,0	26	2,07	0,741	17	0,06	162
100	7,0	21	2,10	0,573	15	-0,1	144
103в	6,0	35	1,94	0,982	35	0,03	111

Таблица 1 – Характеристики физических свойств грунтов

средние значения осадок различаются: $\Delta s_{e.m} < \Delta s_{r.m}$. Например, для образца № 66 (Рисунок 1) эти значения равны, соответственно, 0,0058 мм и 0,0075 мм.

Число циклов n_c коррелирует с характеристиками физических свойств грунтов: с влажностью (0,725), с коэффициентом пористости (0,759) (Таблица 3).

Суммы приращений, рассчитанные для интервала 0 раз $дельно – для нисходящей ветви и восходящей ветви: <math>\sum_{i=1}^{nc} \Delta s_{e.i}$ и $\sum_{i=1}^{nc} \Delta s_{r.i}$ коррелируют с влажностью и коэффициентом пористости грунта (Таблица 3). Величина $\sum_{i=1}^{nc} \Delta s_{e,i}$ имеет неплохую корреляцию (-0,708) с объемным весом грунта под водой (Таблица 3). Эти величины были использованы ниже в качестве граничных условий для вычисления микроструктурных характеристик грунтов.

Номер образ-	n _c	SDS _{e.i}	SDS _{r.i}	$avg\{V_{t,i}\}$	avg{V _{b.i} }
ца		ММ	ММ	m/MPa	m/MPa
117a	16	0,100	0,115	0,00377	0,00301
117б	18	0,095	0,115	0,00306	0,00256
117в	12	0,060	0,080	0,00463	0,00336
117г	18	0,115	0,110	0,00393	0,00312
97	5	0,030	0,040	0,00387	0,00294
98	6	0,035	0,065	0,00280	0,00211
99	5	0,025	0,025	0,00229	0,00175
66	6	0,035	0,040	0,01038	0,00782
74	4	0,030	0,025	0,01001	0,00713
75	5	0,050	0,010	0,00625	0,00507
76	4	0,040	0,035	0,00438	0,00363
77	45	0,400	0,360	0,00421	0,00323
78	9	0,060	0,060	0,00350	0,00279
86a	73	0,575	0,570	0,00428	0,00282
89	3	0,020	0,025	0,00285	0,00200
100	12	0,100	0,125	0,00399	0,00266
103в	37	0,310	0,305	0,00189	0,00156

Таблица 2 – Параметры осадки образцов при компрессионном сжатии постоянно возрастающей нагрузкой

Предположения о механизме деформации грунта в условиях компрессионного сжатия

Рассмотрим механизм деформации образца грунта на интервале0 при следующих предположениях:

1. Цикличность скорости деформации указывает на частую смену характера процесса, происходящего в грунте при постоянно возрастающем

давлении на образец на микроструктурном уровне, определяемом размерами частиц и их микроагрегатов.

Таблица 3 – Коэффициенты корреляции микроструктурных

	W	g	е	l _P	g sb	b _h
n _c	0,725		0,759			
SDS _{e.i}	0,717		0,784		-0,708	
SDS _{r.i}	0,728		0,763			
h₀		-0,010		-0,008		0,626
h₁		0,011		0,020		0,761
b		0,000		-0,036		
h ₂ - b		-0,005		-0,016		0,625
h_3		-0,005		-0,016		0,625
F_0		-0,199		-0,091		
F_{1b}		0,064		0,038		0,890
F _{b2}		-0,060		-0,037		-0,889
F_3		0,078		0,045		0,884

и феноменологических характеристик грунтов

Предположим, что на нисходящей ветви цикла грунт деформируется упруго (скорость деформации уменьшается), а на восходящей – неупруго (скорость деформации увеличивается). Причем, упруго деформируются контакты между частицами во всем объеме образца. Неупругая деформация является отражением микросдвигов, формирующих поверхности скольжения. Микросдвиги на поверхности скольжения макроскопических размеров, происходящие одновременно, создают эффект ускорения деформации макроскопического образца грунта. Микросдвиги происходят одновременно вблизи неоднородностей (наиболее крупных частиц) с одинаковым напряженным состоянием, а затем сливаются в макросдвиги (поверхности скольжения), как смежные сдвиговые трещины.

2. Суммарная площадь поверхностей скольжения увеличивается с каждым циклом за счет увеличения их длины в направлении действия

внешней силы, поэтому увеличивается скорость $V_{t,i}$. Скорость достигает максимального значения $V_{t,nc}$ при $p = s_{str}$ в момент, когда хотя бы одна поверхность скольжения рассекает образец по всей его высоте. Назовем ее тотальной.

Тотальная поверхность скольжения (сдвиговая трещина) образуется при условии ее неустойчивого роста под действием возрастающей нагрузки. Поэтому примем, что только часть сечения образца разрушается поверхностями скольжения при их устойчивом росте и оценим эту часть с помощью коэффициента K_R :

$$K_{R} = \frac{\sum_{i=1}^{nc-1} \Delta s_{r,i}}{\sum_{i=1}^{nc} \Delta s_{r,i}}.$$
 (1)

При устойчивом росте поверхностей скольжения средняя упругая деформация грунта в цикле может быть вычислена по формуле

$$\Delta l_e = K_R \Delta s_{e,m} / (n_c - 1) \,. \tag{2}$$

Для образца № 66 (Рисунок 1) $K_R = 0,875$; $\Delta s_{e.m} = 0,00583$ мм; $n_c = 6$. Тогда $\Delta l_e = 850$ нм.

Описание взаимодействия глинистых поверхностей

Известно, что «для природных глинистых систем наиболее типична суммарная энергетическая кривая..., которая характеризуется наличием двух потенциальных минимумов...(ближнего и дальнего), а также разделяющего их энергетического барьера отталкивания» [3]. Суммарная энергетическая кривая является зависимостью потенциальной энергии связи Uповерхностей глинистых минералов от расстояния r между ними. Координаты ближнего и дальнего минимумов обозначим через h_1 и h_2 , соответственно, энергетического барьера - b. Представим эту кривую в форме функции Лагерра 5-й степени (Рисунок 2):

$$U(x) = U_o e^{-\frac{x}{2}} (1 - 5x + 5x^2 - \frac{5}{3}x^3 + \frac{5}{24}x^4 - \frac{1}{120}x^5), x \in [0;7,2].$$
(3)

Примем, что конец области определения функции x = 7,2 соответствует максимальному расстоянию между глинистыми поверхностями h_3 , на котором ощущается их взаимодействие. Тогда произвольное расстояние между ними может быть выражено через x формулой:

$$r = h_3 \frac{x}{7,2}$$
 (4)

Сила взаимодействия R(r) и ее градиент по расстоянию r - функция f(r) - получаются дифференцированием энергетической кривой (Рисунки 3 и 4):

$$R(r) = -\frac{d}{dr}U(r); \quad f(r) = \frac{d}{dr}R(r).$$
(5)

Введем отношение механической работы, затраченной на упругую деформацию, к работе неупругой деформации на интервале 0 :

$$K_U = \frac{\sum_{i=1}^{nc} \Delta A_{e.i}}{\sum_{i=1}^{nc} \Delta A_{r.i}}.$$
(6)

(Здесь $\Delta A_{e,i} = \Delta p_{e,i} s_{e,im}$ и $\Delta A_{r,i} = \Delta p_{r,i} s_{r,im}$, где $s_{e,im}$ и $s_{r,im}$ - средние значения осадки образца на соответствующих приращениях давления).

Допустим, что отношение (6), полученное из данных эксперимента с компрессионным сжатием, равно отношению значений энергетического барьера U(b) и второй потенциальной ямы $U(h_2)$ (Рисунок 2):

$$\frac{U(b)}{U(h_2)} = K_U \,. \tag{7}$$

Скорректируем функцию U(r) путем изменения ее коэффициентов так, чтобы выполнить условие (7) при значении (6).

Для нормировки функций (3) и (5) используем среднее значение скорости упругой деформации образца на интервале 0 , полученноев опыте с компрессионным сжатием:

$$V_{b.m} = avg\{V_{b.i}\}, i = 1...n_c.$$
(8)

Приравняем обратное ему значение к максимальному значению градиента силы взаимодействия глинистых поверхностей (Рисунок 4):

$$\frac{1}{V_{b.m}} = C_e \,. \tag{9}$$

Из уравнения (9) определяется значение постоянной U_o . Для образца № 66 (Рисунок 1) $U_o = 143 \text{ МПа/м.}$

Наконец, определим значение h_1 , b, h_2 и h_3 из условия соответствия упругой деформации образца участку сопротивления сближению глинистых поверхностей $h_2 - b = \Delta l_e$:

$$\frac{h_2 - b}{h_3} = \frac{x |_{U(b)} - x |_{U(h2)}}{7, 2}.$$
(10)

Для образца № 66 $h_3 = 1150$ нм.

Таким образом, функции U(r); R(r); f(r) определены по данным компрессионного сжатия образца грунта (Рисунки 2, 3 и 4) и описывают модель взаимодействия глинистых поверхностей.

Рисунок 2 – Энергетическая кривая глинистого грунта, полученная по данным компрессионного испытания образца № 66

Рисунок 3 – График силы взаимодействия глинистых поверхностей грунта из образца № 66

Рисунок 4 – График градиента силы взаимодействия глинистых поверхностей грунта из образца № 66

Вычисление характеристик микроструктуры грунта

Испытания образцов грунтов в компрессионном приборе АКП-6Н по описанной выше технологии позволили определить граничные условия для расчета характеристик микроструктуры: число циклов n_c на интервале значений давления $0 ; коэффициент <math>K_R$; среднюю упругую деформацию Δl_e . Расчеты произведены для всех образцов грунтов из Таблицы 1.

Получены характерные точки диаграммы потенциальной энергии связи между глинистыми поверхностями (Рисунок 2, Таблица 4) и значения силы взаимодействия глинистых поверхностей в функции расстояния между ними (Рисунок 3). В Таблице 5 приведены экстремальные значения сил сопротивления сжатию R_0 и раздвижению R_{1b} глинистых поверхно-

стей при ближней агрегации. Величину R_0 называют «расклинивающим давлением». Величина R_{b2} - сила сопротивления сближению поверхностей при дальней агрегации; R_3 - сила сопротивления отрыву поверхностей друг от друга. Первые две дают оценку связи частиц внутри микроагрегатов. Третья и четвертая описывают взаимодействие смежных микроагрегатов.

Значения сил получены в удельном исчислении, т. е. имеют размерность давления. Чтобы получить их интегральные значения, необходимо задаться формой и размерами взаимодействующих глинистых поверхностей. Примем (в рамках модели деформации глинистой микроструктуры [7]), что глинистые поверхности представляют собой прямоугольные пластинки с размерами $h_3 \times h_3/2$. Тогда силы, действующие в единичном контакте, вычисляются по формулам (Таблица 5):

$$F_0 = R_0 h_3^2 / 2, (11)$$

$$F_{1b} = R_{1b} h_3^2 / 2, \qquad 12)$$

$$F_{b2} = R_{b2} h_3^2 / 2 , \qquad (13)$$

$$F_3 = R_3 h_3^2 / 2 \,. \tag{14}$$

Градиенты сил взаимодействия S_e и C_e характеризуют упругие свойства скелета грунта при растяжении и сжатии, соответственно.

На этапе выдерживания образцов до стабилизации деформации при конечном сжимающем давлении получены зависимости осадки от времени, которые имеют вид (Рисунок 5):

$$s_h = (\ln q - \ln q_0) / b_h, \qquad (15)$$

где *s_h* - осадка ползучести образца при постоянном давлении;

q - время с момента фиксации давления, с;

 \boldsymbol{q}_0 - постоянная времени, с;

 b_h - постоянная ползучести, 1/м.

Величина b_h имеет хорошую корреляцию с силами, действующими в единичном контакте: 0,890; -0,889; 0,884 (Таблица 3), менее хорошую с h_1 : 0,761 и слабую корреляцию с h_0 , $h_2 - b$ и h_3 : 0,625. Это свидетельствует о том, что существует физическая связь между постоянной ползучести и микроструктурными характеристиками, которые получены независимо: постоянная b_h - из опыта с релаксацией силы сопротивления образца, а h_0 , $h_2 - b$ и h_3 - вычислением по данным опыта с компрессионным сжатием того же образца.

		Номер	h_0	h ₁	b	$\mathbf{d}_{\mathrm{e}} =$	h₃
--	--	-------	-------	----------------	---	-----------------------------	----

Таблица 4 –	образ-				h ₂ - b		Характерные
точки на энер-	ца	НМ	НМ	НМ	НМ	НМ	гетической
кривой	117a	36	42	138	162	431	
	117б	33	127	39	149	397	
	117в	45	63	218	245	654	
	117г	38	44	145	170	453	
	97	99	115	379	444	1185	
	98	88	102	336	395	1053	
	99	79	93	304	357	952	
	66	96	12	367	432	1152	
	74	174	202	664	781	2083	
	75	222	222	852	1000	2667	
	76	243	932	324	1094	2917	
	77	21	25	82	96	256	
	78	53	62	203	238	635	
	86a	12	14	45	53	141	
	89	176	206	676	794	2116	
	100	74	87	284	334	890	
	103в	24	28	93	110	292	I

С другой стороны, не зависят от объемного веса грунта и числа пластичности, что видно по низким значениям коэффициентов корреляции (Таблица 3). Это указывает на отсутствие связи микроструктурных характеристик с феноменологическими характеристиками, описывающими физическое состояние грунта, и косвенно подтверждает предшествующий вывод.

Перечисленные характеристики описывают свойства модели деформации микроструктуры и могут быть использованы для расчета сопротивления макроскопического грунтового тела при заданной геометрии поверхностей взаимодействия глинистых частиц и их микроагрегатов.

Номер образ-	R ₀	R _{1b}	R _{b2}	R ₃	F ₀	F _{1b}	F _{b2}	F ₃
ца	МПа	МПа	МПа	МПа		Н	Н	Н
117a	-216	257	-124	72	-2,00E-05	2,02E-05	-9,77E-06	5,68E-06
117б	-246	296	-143	83	-1,93E-05	2,33E-05	-1,13E-05	6,51E-06
117в	-364	223	-108	63	-7,78E-05	4,76E-05	-2,30E-05	1,34E-05
117г	-176	264	-129	69	-1,80E-05	2,70E-05	-1,33E-05	7,09E-06
97	-208	227	-109	44	-1,46E-04	1,60E-04	-7,66E-05	3,08E-05
98	-431	429	-204	129	-2,39E-04	2,38E-04	-1,13E-04	7,16E-05
99	-378	448	-216	126	-1,71E-04	2,03E-04	-9,81E-05	5,72E-05
66	-73	97	-47	26	-4,83E-05	6,19E-06	-3,02E-06	1,68E-06
74	-71	107	-52	28	-1,54E-04	4,84E-05	-2,37E-05	1,27E-05
75	-79	165	-82	38	-2,80E-04	5,87E-04	-2,91E-04	1,36E-04
76	-167	211	-103	59	-7,12E-04	9,00E-04	-4,37E-04	2,51E-04
77	-169	252	-124	66	-5,56E-06	8,28E-06	-4,06E-06	2,18E-06
78	-200	279	-136	74	-4,03E-05	5,63E-05	-2,75E-05	1,50E-05
86a	-170	292	-144	73	-1,69E-06	2,91E-06	-1,44E-06	7,27E-07
89	-337	346	-166	101	-7,56E-04	1,57E-04	-7,51E-05	4,60E-05
100	-219	270	-131	76	-8,67E-05	1,07E-04	-5,19E-05	3,03E-05
103в	-321	469	-230	128	-1,37E-05	2,00E-05	-9,81E-06	5,46E-06

Таблица 5 – Экстремальные значения сил взаимодействия

глинистых поверхностей

Список использованной литературы

1. Цытович Н.А. Механика грунтов. Краткий курс. – М.: Высш. школа, 1983. – 288 с.

2. Тер-Мартиросян З.Г. Механика грунтов. – М.: Изд-во АСВ, 2005. – 488 с.

3. Осипов В.И., Соколов В.Н., Еремеев В.В. Глинистые покрышки нефтяных и газовых месторождений. – М.: Наука, 2001. – 238 с.

4. Гольдштейн М.Н. Механические свойства грунтов. – М.: Стройиздат, 1979. – 304 с.

5. Тер-Степанян Г.И. Исследование ползучести глинистых грунтов при сдвиге. – В кн.: Труды YIII Международной конф. по механике грунтов и фундаментостроению. М.: 1972, с. 51-63.

6. Ляшенко П.А., Денисенко В.В. Совершенствование компрессионных испытаний на основе цикличности сжимаемости. Деп. во ВНИИНТПИ Госстроя РФ, 1993, № 11335, 16 с.

7. Ляшенко П.А. Модель деформации микроструктуры грунта//Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2005. - № 11(03). – <u>http://ej.kubagro.ru/2005/06/pdf/01.pdf</u>.