ОСОБЕННОСТИ РОСТА ЯБЛОНИ В УСЛОВИЯХ СКЛОНОВЫХ АГРОЛАНДШАФТОВ ПРЕДГОРИЙ ЗАПАДНОГО ПРЕДКАВКАЗЬЯ

Чекрыгин Вал. В. – старший преподаватель
Кубанский государственный аграрный университет
Чекрыгин Вл. В. – аспирант
Северо-Кавказский зональный НИИ садоводства и виноградарства
Евдокимов П.Ф. – генеральный директор
ОАО КСП «Светлогорское» г. Абинск

В статье рассматриваются особенности роста деревьев яблони сорта Джонатан в условиях склоновых агроландшафтов на протяжении 34-летнего жизненного цикла по величине ежегодного прироста площади годичных колец. Материалы исследований могут быть использованы при планировании агромероприятий по уходу за растениями в различных возрастных периодах.

С развитием агроландшафтного садоводства первостепенное значение приобретает вопрос изучения особенностей роста, плодоношения культурных плодовых растений в условиях склоновых агроландшафтов предгорий.

Вертикальная зональность ландшафтов, ориентация склонов относительно сторон света, наличие водоразделов и балок, почвенные разности и ряд других абиотических факторов создают большое количество микрозон со своим микроклиматом, оказывающим существенное влияние на рост, продуктивность и долговечность деревьев.

В связи с этим нами в насаждениях КСП «Светлогорское» Абинского района Краснодарского края проведены исследования роста деревьев яблони сорта Джонатан от момента посадки до раскорчевки по интенсивности нарастания годовых слоев (годичных колец) на поперечных срезах стволов в средней части штамба [5]. Возраст деревьев от момента прививки составлял 34 года, подвой – сеянцы яблони, схема посадки 8 х 6 м, ориентация рядов по меридиану, формирование кроны разреженно-ярусное с последующим удалением центрального проводника на высоте 1,5–1,8 м. Склоны среднепокатые 10–12° [1]. В процессе обработки почвы в междурядьях на склонах образовались напашные террасы, в результате которых значительная часть поверхности штамбов, ориентированных к верху склона, со временем оказалась под почвой.

Исследования проводились в контрастных условиях ландшафта: основание склона – на высоте 60 м над уровнем моря; вершина водораздела – 187 м; склоны восточной и западной экспозиций – 170 м. Повторность в каждом варианте шестикратная. Плоскость среза ствола размечалась на 8 секторов через 45° линиями, проходящими через сердцевину (рис. 1).

Рис. 1. Поперечное сечение ствола яблони сорта Джонатан (возраст 34 года): темная древесина – ядровая, светлая – заболонь

Ширину годичного кольца рассчитывали по 8 измерениям. Для сглаживания варьирующих данных были использованы простые скользящие средние с интервалом в 4 года с последующим их центрированием [3].

В результате изучения габитуса деревьев и динамики годичных приростов установлено, что на вершине водораздела, восточном и западном склонах 34-летние деревья отстали в росте от деревьев, растущих у основания склона, (при площади сечения штамба последних 854,9 см²) соответственно на 31,7 %; 19,7 и 20,0 %.

При этом структура крон деревьев также изменялась. На восточном склоне наиболее мощные ветви развивались с западной стороны крон, а на западном склоне – с восточной. Различия в асимметрии при диаметре крон 5–6 м могут достигать соотношения 2 : 3–3,5 (рис. 2 и 3).

Рис. 2. Габитус и структура кроны у яблони на восточном склоне

Рис. 3. Габитус и структура кроны у яблони на западном склоне

По нашему мнению, это объясняется не только микроклиматом склона и в самой кроне, но и образованием дополнительных корней на привое в зоне штамба, закрытой почвой, в результате формирования напашных террас (рис. 4).

Рис. 4. Корень, образовавшийся на привое в части штамба, закрытой почвой

В ходе исследований установлено, что возраст таких корней у 34-летних деревьев варьировал от 22 до 23 лет с площадью сечения у основания от 93 до 105 см^2 , в то время как у 34-летних корней – 160– 210 см^2 .

В формировании годичных колец, так же как и у надземной части, обнаружена асимметрия. У деревьев на восточном склоне суммарная ширина годичных колец с западной стороны среза была на 8,4 % больше, чем с восточной, на западном склоне с восточной стороны – соответственно на 8,6 % больше.

В условиях сравнительно ровного рельефа основания склона и вершины водораздела скелетные ветви в кронах развивались симметрично, а суммарная ширина колец была на 7,0–9,5 % больше с западной стороны деревьев (рис. 5).

Рис. 5. Габитус и структура кроны у яблони на вершине водораздела

Особенности роста деревьев на протяжении жизненного цикла, произрастающих в различных условиях, показаны на рисунках 6 и 9, отражающих прирост штамба ежегодный и по скользящим средним за 4 года.

Характер кривых, отображающих особенности роста деревьев яблони в связи с вертикальной зональностью агроландшафтов, свидетельствует о том, что в нижней части склона и на вершине водораздела просматриваются три волны активизации ростовых процессов, свойственных возрастным периодам, выделенным Г.Г. Шитом, и характеризующих этапы роста и плодоношения деревьев (см. рис. 6) [6]. Однако наиболее интенсивный рост наблюдался у растений, произрастающих у основания склона. Уже в первые годы после посадки и до 14-летнего возраста ежегодно годичный прирост у них был значительно больше, чем у деревьев на вершине водораздела. Отставание во времени по идентичным показателям годичного прироста у деревьев сравниваемых вариантов в этот же период составило 5–6 лет.

На рисунках 7 и 8 представлены размеры годичных колец, а на осях координат указан их возраст. Так, если у 10-летних деревьев, растущих у основания склона, диаметр штамба составлял 14,1 см, то у деревьев на водоразделе величина этого показателя наблюдалась только на 15-й год. С 14 до 17 лет годичные приросты штамбов в обоих вариантах выравнивались, а затем на протяжении второй половины жизненного цикла вновь становились ниже у деревьев на водоразделе. Снижение этого показателя у деревьев, расположенных у основания склона в 9–10-летнем, а на вершине водораздела — в 11–12-летнем возрасте можно, очевидно, связать с началом плодоношения.

Отмечен различный характер роста деревьев на склонах восточной и западной экспозиций (рис. 9).

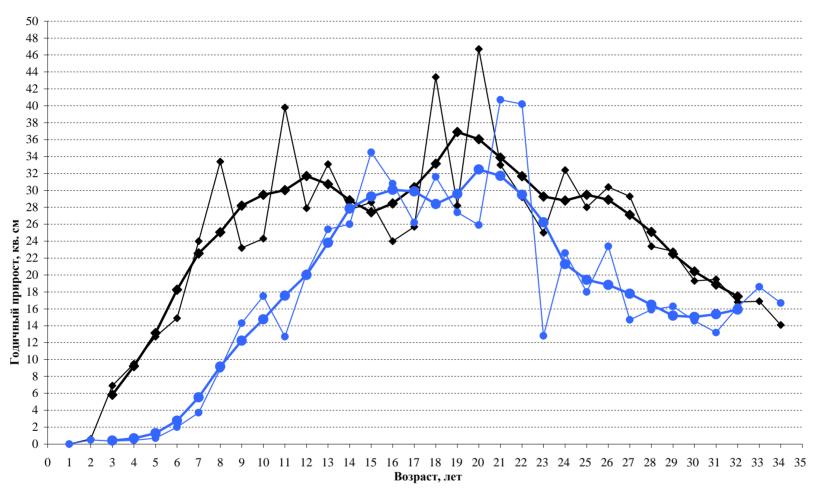


Рис. 6. Динамика годичных приростов штамба у яблони сорта Джонатан при вертикальной зональности агроландшафтов

- **—** Ежегодный, основание склона
- Сглаженные уровни, основание склона
- Ежегодный, вершина водораздела
- Сглаженные уровни, вершина водораздела

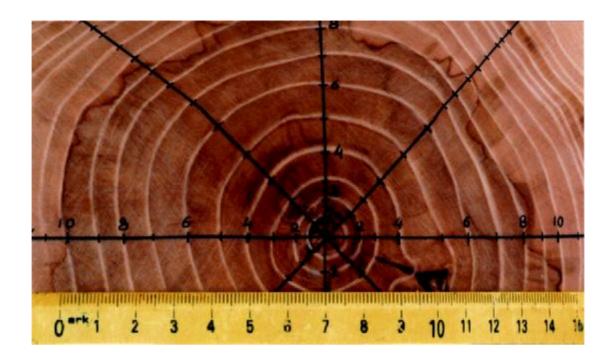


Рис. 7. Размер годичных колец у яблони, произрастающей у основания склона

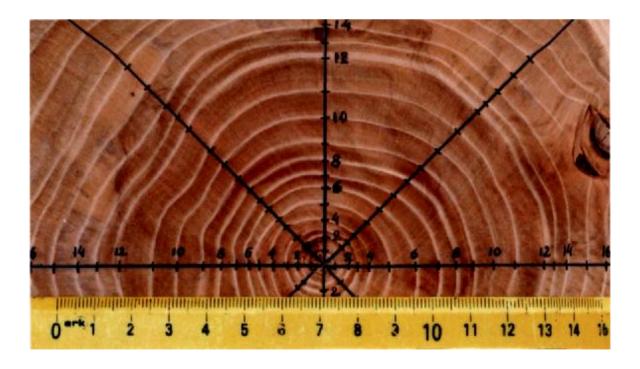
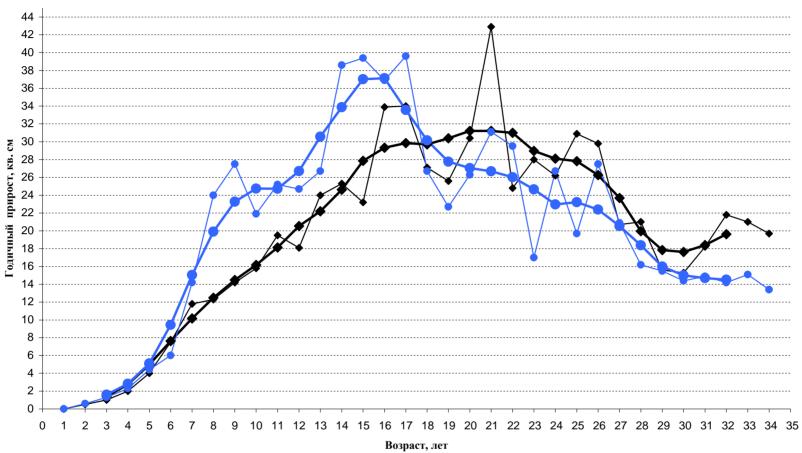



Рис. 8. Размер годичных колец у яблони, произрастающей на вершине водораздела

Возраст, лет Рис. 9. Динамика годичных приростов штамба у яблони сорта Джонатан на склонах разных экспозиций

- Ежегодный, восточный склон
- --- Сглаженные уровни, восточный склон
- --- Ежегодный, западный склон
- --- Сглаженные уровни, западный склон

До 5–6-летнего возраста на восточном и западном склонах деревья растут примерно одинаково. Однако уже с 7 лет ежегодный прирост штамба у деревьев восточного склона начинает отставать по времени на 2–3 года от деревьев западного склона, и это продолжается до 18 лет, после чего более активный рост наблюдается уже на восточном склоне. Некоторое снижение активного роста у деревьев с 7–8-летнего возраста на восточном склоне может быть связано с закладкой цветковых почек и началом плодоношения. Довольно ровная кривая в годичных приростах свидетельствует также о соответствии процессов роста и плодоношения этих деревьев на протяжении всего жизненного цикла.

На западном склоне у деревьев до 10-летнего возраста наблюдался активный рост, затем – его спад, также очевидно связанный с наступлением плодоношения, и вновь усиление до максимума в 14–17 лет. Резкие подъемы и спады годичных приростов характеризуют более выраженную периодичность плодоношения.

Важным показателем здорового состояния древесных растений, их продуктивности и долговечности является наличие и соотношение ядровой древесины и заболони [4]. Процесс ядрообразования связан с отмиранием живых элементов древесины, закупоркой водопроводящих путей, отложением смолы и рядом других причин. Заболонь служит для проведения воды вверх по стволу и для отложения запасных питательных веществ. С возрастом у плодовых растений также наблюдается отмирание внутренних слоев ксилемы. Проведенные исследования показали, что условия произрастания оказывают влияние на скорость их формирования (таблица).

У деревьев 34-летнего возраста, растущих у основания склона и на вершине водораздела, независимо от площади сечения штамба процентное соотношение ядровой древесины и заболони примерно совпадает. В то же время при одном и том же возрасте (14–15 лет) площадь заболони у де-

ревьев, расположенных на вершине водораздела, на 32,6 % меньше, чем у основания склона.

Наиболее благоприятные условия для роста яблони складываются на западном склоне. По сравнению с восточным склоном здесь наблюдалось в 1,5 раза меньше ядровой древесины и больше заболони. Причем возраст заболони составлял 21 год, в то время как на восточном склоне – всего 13 из 34 лет.

Если учесть, что 0,5 мм² проводящей системы ксилемы обеспечивает нарастание 1 г зеленой массы [2], то очевидно, что агроландшафты западных склонов и у основания склонов обеспечивают большую продуктивность и долговечность деревьев, чем восточных и тем более верхних частей водоразделов.

Соотношение ядра и заболони у яблони сорта Джонатан при выращивании в различных условиях агроландшафта (возраст 34 года)

Вариант	Пло-	Ядро		Заболонь		
	щадь сечения штамба,	CM ²	%	cm ²	%	воз- раст, лет
	cm ²					J1C1
Основание склона	854,9	452,2	52,9	402,7	47,1	15
Вершина водораздела	584,2	312,7	53,5	271,5	46,5	14
Восточный склон	686,8	331,8	48,3	355,0	51,7	13
Западный склон	684,1	219,4	32,1	464,7	67,9	21

Выводы. 1. Вертикальная зональность, а также ориентация склонов относительно сторон света оказывают влияние на динамику годичных приростов штамба, а также формирование структуры кроны.

- 2. В верхней части склонов (на водоразделе) в связи со слабым ростом деревьев в первом возрастном периоде выращивание яблони на семенных подвоях возможно с применением дополнительных агромероприятий, направленных на усиление ростовых процессов.
- 3. Наиболее благоприятными для роста и долговечности деревьев яблони являются склоны западной экспозиции и основания склонов.

Список литературы

- 1. Драгавцев А.П. Возделывание плодовых культур в горных условиях Заилийского Ала-Тау. Алма-Ата, 1947. 126 с.
 - 2. Кудрявец Р.П. Физиология плодовых растений. М.: Колос, 1983. С. 122.
- 3. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник / А.И. Харламова, О.Э. Башина, В.Т. Бабурин и др.; Под ред. А.А. Спирина, О.Э. Башиной. М.: Финансы и статистика, 1995. 296 с.
 - 4. Перелыгин Л.М. Древесиноведение. М., 1957. 360 с.
 - 5. Теренько Г.Н. Продуктивность плодовых деревьев. Краснодар, 2003. 182 с.
 - 6. Шитт П.Г. Избр. соч. М.: Колос, 1968. С. 122