УДК 547.82; 547.85

UDC 547.82; 547.85

02.00.00 Химические науки

Chemical sciences

СИНТЕЗ ЗАМЕЩЕННЫХ ПИРИДИЛ-3-

СУЛЬФОНИЛИЗОЦИАНАТОВ И ПИРИДИЛ-3-СУЛЬФОНИЛМОЧЕВИН

Дядюченко Людмила Всеволодовна к.х.н., доцент РИНЦ SPIN-код 1135-3336 ludm.dyadiuchenko@yandex.ru

Ткач Лидия Никифоровна Научный сотрудник

Голубева Наталия Васильевна Научный сотрудник Всероссийский научно-исследовательский институт биологической защиты растений, Краснодар, Россия

Дмитриева Ирина Геннадиевна к.х.н., доцент РИНЦ SPIN-код 6882-9695 dm.a.dm@rambler.ru Кубанский государственный аграрный университет, Краснодар, Россия

С целью синтеза новых пиридил-3сульфонилизоцианатов изучены реакции ацилирования амидов замещенных пиридин-3сульфокислот оксалилхлоридом и фосгеном. С учётом выявленных особенностей ацилирования подобраны оптимальные условия проведения синтеза. На основе полученных сульфонилизоцианатов синтезирована серия пиридил-3-сульфонилмочевин и исследована их биологическая активность. Найдены соединения, обладающие высоким гербицидным эффектом

Ключевые слова: СУЛЬФОНИЛАМИДЫ, СУЛЬФОНИЛХЛОРИДЫ, СУЛЬФОНИЛИЗОЦИАНАТЫ, СУЛЬФОНИЛМОЧЕВИНЫ, АЦИЛИРОВАНИЕ, МАСС-СПЕКТРЫ, БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ

SYNTHESIS OF SUBSTITUTED PYRIDINE-3-SULFONYL ISOCYANATES AND PYRIDINE-**3-SULFONYL UREAS**

Dyadyuchenko Lyudmila Vsevolodovna Cand.Chem.Sci, associate professor RSCI SPIN-code 1135-3336 ludm.dyadiuchenko@yandex.ru

Tkach Lidiya Nikiphorovna research associate

Golubeva Natalia Vassilievna research associate All-Russian Research Institute of Biological Plant Protection, Krasnodar, Russia.

Dmitrieva Irina Gennadievna Cand.Chem.Sci, associate professor RSCI SPIN-code 6882-9695 dm.a.dm@rambler.ru Kuban State Agrarian University, Krasnodar, Russia.

Acylation of amides substituted with pyridine-3sulfonic acids oxalil-chlorides and phosgene was studied. New pyridil-3-sulfonil isocyanates were synthesized. The conditions for this synthesis were optimized by taking into account the detailed understanding of this acylation. The synthesized pyridine-3-sulfonyl isozyanates were converted to pyridine-3-sulfonyl ureas. Biological activity of the new compounds was studied and the substances with high herbicidal effect were found

Keywords: SULFONYL AMIDES, SULFONYL CHLORIDES, SULFONYL ISOCYANATES, SULFONYL UREAS, ACYLATION, MASS-SPECTRUM, BIOLOGICAL ACTIVITY

Замещённые пиридил-3-сульфонилмочевины известны давно и обладают использовались медицине: некоторые ИЗ них противовоспалительным [1], другие – диуретическим действием [2]. После того, как фирмой Du Pont были синтезированы уникальные гербициды нового поколения – хлорсульфурон, сульфометуронметил и другие,

начались интенсивные работы по поиску аналогичных гербицидных структур в классах гетероциклических соединений, в том числе, пиридина [3-8]. Анализ патентных данных позволяет установить, что наибольшее внимание исследователей уделено мочевинам, содержащим в пиридиновом цикле один заместитель — хлор, чаще во втором положении пиридина. Интерес представляло изучить, как увеличение числа заместителей в кольце пиридина и изменение их природы повлияет на биологические свойства сульфонилмочевин.

В качестве исходных соединений для синтеза сульфонилмочевин используют сульфонилизоцианаты, которые в свою очередь получают ацилированием соответствующих сульфониламидов [3-8]. В настоящей работе мы исследовали возможность получения неизвестных ранее пиридил-3-сульфонилизоцианатов на основе синтезированных нами пиридил-3-сульфониламидов **1a-c** [9], для чего было изучено поведение последних в реакциях с оксалилхлоридом и фосгеном.

В ходе эксперимента выявлена интересная особенность: амиды замещённых пиридин-3-сульфокислот **1a-c**, в отличие от аналогичных амидов никотиновых кислот [10], при взаимодействии с оксалилхлоридом в качестве основного продукта реакции образуют соответствующие сульфонилхлориды **2a-c** в смеси с небольшим количеством целевых сульфонилизоцианатов **3a-c**:

 Γ де **1-3**а R = H, $R^1 = CH_3$; **1-3**ь R = CI, $R^1 = CH_3$; **1-3**с R = H, $R^1 = CI$.

Для качественного и количественного исследования смеси пользовались методом хромато-масс-спектрометрии. Хроматограмма

показала, что во всех случаях получена смесь двух веществ и позволила установить их количественное соотношение, а значение масс молекулярных ионов в спектрах индивидуальных компонентов и картина их фрагментации позволили установить их структурные формулы.

целью изучения влияния экспериментальных условий количественный состав конечных продуктов реакцию проводили при различных температурах в интервале 80 –140 °C как с использованием катализатора 1,4-диазобицикло-[2,2,2]октана (ДАБЦО) или N,N,N',N'-(ТМЭДА), без тетраметилэтилендиамина так И него; изменяли продолжительность нагревания (2-6 ч), а также последовательность прибавления реагентов. В качестве растворителя использовали м-ксилол. Всё это позволило установить, что при проведении реакции в мягких условиях: смешение реагентов при комнатной температуре и постепенное нагревание до 80 °C приводит к высокому выходу соответствующего 80 %), сульфонилхлорида 2a-c (до содержащего следы сульфонилизоцианата За-с. В более жёстких условиях, а именно, когда к °C нагретой 100-120 смеси оксалилхлорида, ДО катализатора растворителя прибавляли исследуемый пиридил-3-сульфониламид 1а-с и °С, содержание продолжали нагревание при 120-130 сульфонилизоцианата в смеси продуктов реакции увеличивалось до ~ 20 %. При температурах выше 130 °C наблюдалось существенное осмоление реакционной массы.

Из изложенного следует, что получить замещённые пиридил-3сульфонилизоцианаты рассматриваемого ряда (**3a-c**) реакцией соответствующих сульфониламидов с оксалилхлоридом с удовлетворительным выходом не представляется возможным. Для синтеза искомых сульфонилизоцианатов **3а-с** нами за основу был взят другой известный метод получения [11] - фосгенирование соответствующих алкилсульфонилмочевин **4a-c**:

 Γ де **3-4a** R = H, $R^1 = CH_3$; **3-4b** R = CI, $R^1 = CH_3$; **3-4c** R = H, $R^1 = CI$.

В реакциях с фосгеном использовали предварительно полученную и очищенную N-бутил-N¹-(замещённый пиридил-3)-сульфонилмочевину **4а-с**, которую с высоким выходом получали кипячением соответствующего сульфониламида **1а-с** с бутилизоцианатом в течение 3 ч в среде диэтилкетона в присутствии карбоната калия.

Исследование конечных продуктов фосгенирования сульфонилмочевин **4a-c**, полученных в различных экспериментальных условиях, методами ИК- и масс-спектрального анализа показало, что целевые сульфонилизоцианаты **3a-c** в качестве примеси содержат соответствующие сульфонилхлориды **2a-c**.

Нами были установлены оптимальные условия проведения реакций, позволяющие получать сульфонилизоцианаты **3а-с** с выходами 75-85 %. Для всех сульфонилизоцианатов **3а-с** лучшие результаты получили при проведении реакции в температурном интервале 120-125 °C, время фосгенирования в зависимости от структуры исходной сульфонилмочевин **4а-с** составляет 0,5-3 ч, а также использование в качестве катализатора ДАБЦО. Очистку конечных продуктов осуществляли дистиляцией в вакууме.

Время окончания реакции для каждого сульфонилизоцианата **3а-с** устанавливали по изменению интенсивности характеристической полосы

валентных колебаний N=C=O в ИК-спектре, при этом использовали кювету с фиксированным зазором между линзами. Наблюдение за ходом реакции проводили методом отбора проб; подачу фосгена в реакционную массу поддерживали на уровне 0,05-0,07 г/мин. Реакцию считали завершённой когда интенсивность полосы поглощения N=C=O достигала постоянной величины (для соединения 3a-30 мин., 3b-50 мин., 3c-3ч).

Путём ИК-измерений изучен также ход реакций без катализатора и с использованием в качестве катализаторов триэтиамина, ТМЭДА и ДАБЦО. Как отмечалось выше, лучшие результаты получены с использованием катализатора ДАБЦО.

В таблице 1 приведена характеристика синтезированных пиридил-3 сульфонилизоцианатов.

Coe	Ерутто	<u>Найдено</u>			Ткип.,	Римол	ИК-	Macc-
ди-	Брутто- формула	Вычислено			°С (мм.	Выход,	спектр,	спектр,
нение		C, %	Н, %	N, %	рт. ст)	/0	(v_{NCO})	(M ⁺)
3a	C ₈ H ₇ CIN ₂ O ₃ S	<u>38,56</u>	<u>2,71</u>	11,18	114-115	85	2239	246
Ja		38,95	2,86	11,36	(6)	0.5		
3b	C ₈ H ₆ CI ₂ N ₂ O ₃ S	33,89	<u>2,24</u>	9,74	122-123	75	2239	280
	0,110,012112030	34,18	2,15	9,96	(6)	7.5		
3c	C ₇ H ₄ CI ₂ N ₂ O ₃ S	31,69	<u>1,63</u>	10,30	141-142	82	2239	266
		31,48	1,51	10,49	(6)	02		

Таблица 1 – Характеристика соединений За-с

В чистом виде пиридил-3 сульфонилизоцианаты **За-с** представляют собой вязкие масла светло-жёлтого цвета, легко реагирующие с влагой воздуха. На их основе взаимодействием с гетероциклическими аминами синтезирована серия замещённых сульфонилмочевин (**5а-р**) — потенциальных БАВ. Для уменьшения потерь изоцианатов в реакциях использовали последние без выделения, в виде реакционных растворов, предварительно подвергнутых дегазации и концентрированию.

Где ${\bf 5a}$ R = H, R¹ = CH₃, R² = R³ = CH₃, X=CH; ${\bf 5b}$ R = H, R¹ = CH₃, R² = CH₃, R³ = CF₃, X=CH; ${\bf 5c}$ R = H, R¹ = CH₃, R² = CH₃, R³ = OCH₃, X=CH; ${\bf 5d}$ R = H, R¹ = CH₃, R² = CH₃, R³ = OCH₃, X=N; ${\bf 5e}$ R = H, R¹ = CH₃, R² = CH₃, R³ = N(CH₃)₂, X=N; ${\bf 5f}$ R = H, R¹ = CH₃, R² = CI, R³ = OCH₃, X=N; ${\bf 5g}$ R = H, R¹ = CI, R² = R³ = CH₃, X=CH; ${\bf 5h}$ R = H, R¹ = CI, R² = CH₃, R³ = OCH₃, X=CH; ${\bf 5h}$ R = H, R¹ = CI, R² = CH₃, R³ = OCH₃, X=N; ${\bf 5h}$ R = H, R¹ = CI, R² = OCH₃, R³ = OCH₃, X=N; ${\bf 5h}$ R = H, R¹ = CI, R² = OCH₃, R³ = OCH₃, X=N; ${\bf 5h}$ R = CI, R¹ = CH₃, R² = CH₃, R³ = OCH₃, X=CH; ${\bf 5h}$ R = CI, R¹ = CH₃, R² = CH₃, R³ = OCH₃, X=CH; ${\bf 5h}$ R = CI, R¹ = CH₃, R² = CH₃, R³ = OCH₃, R³ = OCH₃, X=CH; ${\bf 5h}$ R = CI, R¹ = CH₃, R² = CH₃, R² = CH₃, R³ = OCH₃, X=CH; ${\bf 5h}$ R = CI, R¹ = CH₃, R² = CH₃, R² = CH₃, R³ = OCH₃, X=CH; ${\bf 5h}$ R = CI, R¹ = CH₃, R² = CH₃, R² = CH₃, R³ = OCH₃, X=N.

Синтез осуществляли в среде ксилола в присутствии ТМЭДА или без катализатора. Активность рассматриваемых сульфонилизоцианатов в реакциях с аминами снижалась в ряду $3b \to 3c \to 3a$, следовательно, присутствие электроноакцепторных заместителей в кольце пиридина (особенно в положении 5) повышает их реакционную способность.

Полученные сульфонилмочевины представляют собой белые кристаллические вещества, их физико-химические константы и данные элементного анализа представлены в таблице 2. Структура их подтверждена данными ИК- и масс-спектрального анализа.

Таблица 2 – Физико-химические константы соединений 4а-с, 5а-р

Сое	Брутто-		<u>Найдено</u> Вычислено	Тпл.,	Выход, %	
нение	формула	C, %	Н, %	N, %	$^{\circ}\mathrm{C}$	Выход, 70
4a	$C_{12}H_{18}CIN_3O_3S$	45,33 45,07	5,88 5,69	13,25 13,14	141-142	90
4b	$C_{12}H_{17}CI_2N_3O_3S$	40,80 40,69	4,89 4,85	11,74 11,86	144-145	83
4c	$C_{11}H_{15}CI_2N_3O_3S$	39,02 38,83	4,51 4,45	12,42 12,35	135-136	79
5a	$C_{14}H_{16}CIN_5O_3S$	45,70 45,47	4,38 4,36	18,89 18,94	216-217	89
5b	$C_{14}H_{13}CIF_3N_5O_3S$	39,45 39,68	3,08 3,10	16,71 16,53	209-210	80
5c	$C_{14}H_{16}CIN_5O_4S$	43,79 43,58	4,06 4,19	18,02 18,16	210-212	81
5d	$C_{13}H_{15}CIN_6O_4S$	40,44 40,37	3,90 3,92	21,80 21,73	186-187	76
5e	$C_{14}H_{18}CIN_7O_4S$	40,65 40,43	4,29 4,37	23,36 23,58	202-203	82
5f	$C_{13}H_{15}CI_2N_7O_3S$	36,94 37,15	3,48 3,60	23,37 23,34	189-190	54
5g	$C_{13}H_{13}CI_2N_5O_3S$	40,28 40,01	3,43 3,36	17,89 17,95	229-230	75
5h	$C_{13}H_{13}CI_2N_5O_4S$	38,26 38,44	3,15 3,23	17,07 17,24	214-215	72
5j	$C_{13}H_{10}CI_2F_3N_5O_3S$	35,61 35,15	2,32 2,27	15,90 15,77	199-200	48
5k	$C_{12}H_{12}CI_2N_6O_4S$	35,45 35,39	2,95 2,98	20,48 20,64	171-172	67
51	$C_{12}H_{12}CI_2N_6O_5S$	34,12 34,05	2,84 2,86	19,62 19,85	188-189	44
5m	$C_{14}H_{15}CI_{2}N_{5}O_{3}S$	41,28 41,59	3,72 3,75	17,21 17,33	217-218	95
5n	$C_{14}H_{15}CI_2N_5O_4S$	40,20 40,01	3,68 3,61	16,72 16,67	205-206	94
50	$C_{14}H_{12}CI_2F_3N_5O_3S$	36,43 36,69	2,64 2,65	15,33 15,29	208-209	90
5p	$C_{13}H_{14}CI_2N_6O_4S$	36,82 37,07	3,24 3,36	19,90 19,96	184-185	64

ИК-спектры соединений этого ряда содержат характеристические полосы поглощений, свойственные этому типу структур (таблица 3). Интенсивное поглощение в области 1736-1655 см⁻¹ соответствует валентным колебаниям карбонильной группы. Спектры также содержат по две полосы средней интенсивности в области 3346-3132 см⁻¹, отвечающие валентным колебаниям двух N-H групп. Две очень интенсивные полосы

поглощения в интервалах 1394-1340 и 1192-1151 см $^{-1}$ обусловлены асимметрическими и симметрическими валентными колебаниями SO_2 -группы [12].

Таблица 3 – Данные ИК-спектров соединений 4а-с, 5а-р

	Va. o	$ u_{ ext{N-H}}$	ν_{O}	-S=O	$\nu_{\text{C=C, C=N}}$	
Соединение	$v_{C=O}$	VN-H	асимм.	симм.	пиридина	пиримидина, триазина
4a	1678	3342,3160	1354	1169	1591, 1560	
4b	1655	3344,3174	1362	1169	1555, 1522	_
4 c	1664	3346, 3150	1356	1180	1560, 1532	_
5a	1699	3227, 3161	1369	1177	1558, 1512	1605
5b	1709	3236, 3146	1371	1165	1568, 1525	1610
5c	1699	3242, 3160	1366	1165	1568, 1528	1614
5d	1709	3210, 3140	1373	1171	1560, 1529	1598
5e	1705	3210, 3132	1370	1171	1585, 1548	1615
5f	1703	3201, 3136	1383	1187	1580, 1534	1610
5g	1699	3229, 3151	1373	1169	1558, 1518	1605
5h	1709	3236, 3148	1371	1170	1568, 1530	1620
5j	1713	3245, 3157	1372	1157	1570, 1536	1614
5k	1707	3212, 3140	1383	1155	1556, 1517	1601
51	1707	3209, 3132	1375	1151	1560, 1531	1599
5m	1699	3229, 3155	1371	1171	1556, 1519	1609
5n	1699	3256, 3160	1372	1165	1570, 1521	1614
50	1709	3235, 3148	1394	1191	1570, 1541	1614
5p	1705	3231, 3150	1365	1169	1556, 1528	1597

Сульфонилмочевины **5а-р** весьма неустойчивы под действием электронного удара, поэтому их масс-спектры записывали при энергии ионизирующих электронов 20 эВ; интенсивность пиков их молекулярных ионов составляет 5-9 %. Для первичной фрагментации, как и для ранее описанных N-алкил(арил)-N¹-(замещённый никотиноил)мочевин [13], наиболее характерным является диссоциация связи C- N мочевинного мостика с одновременной миграцией атома водорода:

В результате образуется четыре типа фрагментов (в скобках указана их относительная интенсивность):

Результаты масс-спектрального анализа приведены в таблице 4.

Таблица 4 – Данные масс-спектров соединений 4а-с, 5а-р

Соединение	m/z (относительная интенсивность, %)
	, , ,
4a	319 [M] ⁺ (100); 284 [M-CI] ⁺ (31); 347 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 230 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 220 [284-SO ₂] ⁺ (36); 204 [M-NHC ₄ H ₉] ⁺ (53); 205 [M-NHC ₄ H ₉] ⁺ (53);
	$NHC(0)NHC_4H_9]^+(12); 140 [204-SO_2]^+(63).$
4b	353 [M] ⁺ (100); 318 [M-CI] ⁺ (28); 281 [M-NHC ₄ H ₉] ⁺ (25); 280 [F ₃] ⁺ (20); 254 [284-SO ₂] ⁺ (39);
	174 [F ₃ - SO ₂ NCO] ⁺ (24); 138 [174-HCI] ⁺ (12); 99[F ₂] ⁺ (53); 73 [F ₁] ⁺ (22).
4c	339 [M] ⁺ (100); 304 [M-CI] ⁺ (45); 267 [M-NHC ₄ H ₉] ⁺ (45); 240 [284-SO ₂] ⁺ (68); 224 [M-
	NHC(0)NHC ₄ H ₉ ⁺ (40); 160 [224-SO ₂] ⁺ (71); 99[F ₂] ⁺ (80); 73 [F ₁] ⁺ (51).
5a	$369 [M]^+(9); 246 [F_3]^+(45); 220 [F_4]^+(7); 204 [F_4-NH_2]^+(19); 149 [F_2]^+(15); 123 [F_1]^+(100).$
5b	$423 [M]^{+}(5); 246 [F_{3}]^{+}(32); 220 [F_{4}]^{+}(13); 204 [F_{4}-NH_{2}]^{+}(15); 203 [F_{2}]^{+}(22); 177 [F_{1}]^{+}(100).$
5c	$385 [M]^{+}(6); 246 [F_{3}]^{+}(41); 220 [F_{4}]^{+}(16); 204 [F_{4}-NH_{2}]^{+}(10); 165 [F_{2}]^{+}(18); 139 [F_{1}]^{+}(100).$
5d	$ 386 \text{ [M]}^+ (7); 322 \text{ [M-SO}_2]^+ (14); 246 \text{ [F}_3]^+ (43); 220 \text{ [F}_4]^+ (6); 204 \text{ [F}_4-\text{NH}_2]^+ (15); 166 \text{ [F}_2]^+$
	(12) ; $140 [F_1]^+ (100)$.
5e	$415 [M]^{+}(6); 246 [F_{3}]^{+}(54); 220 [F_{4}]^{+}(31); 204 [F_{4}-NH_{2}]^{+}(8); 195 [F_{2}]^{+}(14); 169 [F_{1}]^{+}(100).$
5f	$419 [M]^{+}(8); 246 [F_{3}]^{+}(59); 220 [F_{4}]^{+}(33); 204 [F_{4}-NH_{2}]^{+}(17); 199 [F_{2}]^{+}(32); 173 [F_{1}]^{+}(100).$
5 g	$389 [M]^{+} (7); 266 [F_{3}]^{+} (26); 240 [F_{4}]^{+} (8); 224 [F_{4}-NH_{2}]^{+} (21); 149 [F_{2}]^{+} (18); 123 [F_{1}]^{+} (100).$
5h	$405 [M]^{+}(5); 266 [F_{3}]^{+}(38); 240 [F_{4}]^{+}(16); 224 [F_{4}-NH_{2}]^{+}(11); 165 [F_{2}]^{+}(24); 139 [F_{1}]^{+}(100).$
5j	$443 [M]^{+} (6); 266 [F_{3}]^{+} (20); 240 [F_{4}]^{+} (22); 224 [F_{4}-NH_{2}]^{+} (14); 203 [F_{2}]^{+} (49); 177 [F_{1}]^{+} (100).$
5k	$406 [M]^{+}(5); 266 [F_{3}]^{+}(41); 240 [F_{4}]^{+}(12); 224 [F_{4}-NH_{2}]^{+}(9); 166 [F_{2}]^{+}(10); 140 [F_{1}]^{+}(100).$
51	$422 [M]^{+}(9); 266 [F_{3}]^{+}(33); 240 [F_{4}]^{+}(19); 224 [F_{4}-NH_{2}]^{+}(11); 182 [F_{2}]^{+}(35); 156 [F_{1}]^{+}(100).$
5m	$419 [M]^{+} (6); 280 [F_{3}]^{+} (46); 254 [F_{4}]^{+} (10); 238 [F_{4}-NH_{2}]^{+} (9); 165 [F_{2}]^{+} (16); 139 [F_{1}]^{+} (100).$
5n	$403 [M]^{+} (7); 280 [F_{3}]^{+} (54); 254 [F_{4}]^{+} (16); 238 [F_{4}-NH_{2}]^{+} (21); 149 [F_{2}]^{+} (29); 123 [F_{1}]^{+} (100).$
50	$457 \text{ [M]}^{+}(8); 358 \text{ [M-SO}_{2]}^{+}(20); 280 \text{ [F}_{3]}^{+}(22); 254 \text{ [F}_{4]}^{+}(6); 203 \text{ [F}_{2]}^{+}(26); 177 \text{ [F}_{1]}^{+}(100).$
5p	$420 \text{ [M]}^{+}(5); 280 \text{ [F}_{3}]^{+}(35); 254 \text{ [F}_{4}]^{+}(32); 238 \text{ [F}_{4}-\text{NH}_{2}]^{+}(18); 166 \text{ [F}_{2}]^{+}(33); 140 \text{ [F}_{1}]^{+}(100).$

Синтезированные сульфонилмочевины **5а-р** были исследованы на гербицидную активность в полевых мелкоделяночных опытах на базе ВНИИБЗР. Высокую активность проявило соединение **5c**, которое в дозе 4 г/га уничтожает как злаковые сорняки (пырей ползучий, овсюг, щетинник), так и двудольные (марь белая).

Таким образом, разработаны способы синтеза новых пиридил-3сульфонилизоцианатов и замещённых сульфонилмочевин на их основе. В числе синтезированных соединений найдено вещество с высоким гербицидным эффектом, которое после детального изучения его токсикологических свойств может найти применение в качестве гербицида сплошного действия для обработки полей после уборки урожая или земель несельскохозяйственного назначения.

Экспериментальная часть

Элементный анализ на С, Н, N синтезированных соединений выполнен на анализаторе Carlo-Erba (мод. 1106). Масс-спектры электронного удара записаны на приборе «Finnigan MAT INCOS 50» (энергия ионизирующего излучения — 20 эВ). ИК-спектры получены на приборе Infra LUM FT-02. Температуры плавления определены на нагревательном приборе Stuart SMP 30.

Синтез 2-хлор-4,6-диметилпиридил-3-сульфонилизоцианата (3а)

В четырёхгорлую колбу, снабжённую мешалкой, термометром, обратным холодильником и барботёром загружают 2,0 г (4,8 ммоль) N-бутил- N^1 -(2-хлор-4,6-диметилпиридил-3)-сульфонилмочевины **4a**, 50 мл абсолютного м-ксилола и нагревают до 120 °C, затем начинают подачу фосгена со скоростью 0,05-0,07 г/мин (расход фосгена контролируют газовым реометром). Через 3-5 мин вносят каталитическое количество ДАБЦО и продолжают пропускать фосген в течение 0,5 ч. После охлаждения и отделения нерастворившейся части реакционный раствор

упаривают с помощью ротационного испарителя, остаток дистилируют в вакууме при температуре 114-115 °C (6 мм. рт. ст.). Получают продукт в виде масла, выход $1,24 \Gamma (90\%)$.

Аналогично получают изоцианаты **3b** (время фосгенирования 50 мин) и **3c** (3 ч).

Общая методика синтеза бутилсульфонилмочевин 4а-с

Смешивают эквимолярные количества пиридил-3 сульфониламида **1а-с**, бутилизоцианата, безводного углекислого калия в среде абсолютного диэтилкетона и кипятят 3 ч. Охлаждённую реакционную массу выливают в ледяную воду, подкисляют НСІ до рН 1,5, осадок отфильтровывают, сушат. После перекристаллизации из этилацетата получают целевые продукты **4а-с**.

Общая методика синтеза гетерилсульфонилмочевин 5а-р

В 10 реакционную колбу вносят навеску ммоль гетероциклического амина, приливают сконцентрированный до половины объёма реакционный раствор, содержащий 11 ммоль сульфонилизоцианата За-с, перемешивают до образования равномерной суспензии, добавляют 2-3 капли ТМЭДА, затем продолжают перемешивание при комнатной температуре или нагревают реакционную смесь. Сульфонилизоцианат За реагирует с аминопиримидинами и аминитриазинами при комнатной температуре и без катализатора, время реакции 2-5 ч. Изоцианаты 3b, с при нагревании (80 -100 °C) в присутствии ТМЭДА, продолжительность реакции 10-14 ч. Очищают мочевины 5а-р переосаждением из слабого раствора NaOH.

Литература

- 1. Патент № 16836/74, Англия. Delarge J.E., Lapiere C.L. Pyridine derivatives. Опубликовано 22.06.1977.
- 2. Патент № 1593609, Англия. Lapiere C.L., Delarge J.E. Pyridin sulphonamides. Опубликовано 11.06.1981.

- 3. Патент № 4301286, США. Schwing G.W., Woods T.S. Herbicidal O-alkylsulfonyl isoureas. Опубликовано 17.11.1981.
- 4. Патент № 4425155, США. Donald J Dumas. Herbicidal sulfonamide N-oxides. Опубликовано 10.01.1984.
- 5. Патент № 4544401, США. Lewitt G. Agricultural pyridinesulfonamides. Опубликовано 01.11.1985.
- 6. Патент № 4544401, США. Lewitt G. Herbicidal heterocyclic alkylaminocarbonylsulfonamides. Опубликовано 21.01.1986.
- 7. Патент № 4605432, США. Adams John B. Pyridil sulphone herbicides. Опубликовано12.08. 1986.
- 8. Патент № 4668279, США. Rorer Morris P. Herbicidal pyridinesulfonamides. Опубликовано 26.05.1987.
- 9. Dyadyuchenko L.V. Synthesis of several substituted pyridine-3-sulfonyl chlorides, sulfonic acids and sulfonyl amides / L. V. Dyadyuchenko, I. G. Dmitrieva, D. Yu. Nazarenko, V. D. Strelkov // Chemistry of Heterocyclic Compounds. -2014. Vol. 50. N^{Ω} 9. P. 1259-1269.
- 10. Dyadyuchenko L.V. Synthesis and properties of some new nicotinoyl isocyanates and their fragmentation under electron impact / L. V. Dyadyuchenko, S.N. Michaylichenko, I. G. Dmitrieva, V.N. Zaplishny // Chemistry of Heterocyclic Compounds. 2005. Vol. 41. № 4. P. 466-470.
- 11. Патент № 4342587, США. Lewitt G. Herbicidal pyridinesulfonamides. Опубликовано 03.08.1982.
- 12. Наканиси К. Инфракрасные спектры и строение органических соединений. M: Мир, 1965. C. 53.
- 13. Dyadyuchenko L.V. Synthesis, properties, and special features of the fragmentation under electron impact of N-substituted nicotinoyl ureas impact / L. V. Dyadyuchenko, S.N. Michaylichenko, I. G. Dmitrieva, V.N. Zaplishny // Chemistry of Heterocyclic Compounds. $-2005.-Vol.\,41.-No.\,5.-P.\,606-612$.

References

- 1. Patent № 16836/74, Anglija. Delarge J.E., Lapiere C.L. Pyridine derivatives. Opublikovano 22.06.1977.
- 2. Patent № 1593609, Anglija. Lapiere C.L., Delarge J.E. Pyridin sulphonamides. Opublikovano 11.06.1981.
- 3. Patent № 4301286, CShA. Schwing G.W., Woods T.S. Herbicidal O-alkylsulfonyl isoureas. Opublikovano 17.11.1981.
- 4. Patent № 4425155, CShA. Donald J Dumas. Herbicidal sulfonamide N-oxides. Opublikovano 10.01.1984.
- 5. Patent № 4544401, CShA. Lewitt G. Agricultural pyridinesulfonamides. Opublikovano 01.11.1985.
- 6. Patent № 4544401, CShA. Lewitt G. Herbicidal heterocyclic alkylaminocarbonylsulfonamides. Opublikovano 21.01.1986.
- 7. Patent № 4605432, CShA. Adams John B. Pyridil sulphone herbicides. Opublikovano12.08. 1986.
- 8. Patent № 4668279, CShA. Rorer Morris P. Herbicidal pyridinesulfonamides. Opublikovano 26.05.1987.
- 9. Dyadyuchenko L.V. Synthesis of several substituted pyridine-3-sulfonyl chlorides, -sulfonic acids and sulfonyl amides / L. V. Dyadyuchenko, I. G. Dmitrieva, D. Yu. Nazarenko,

- V. D. Strelkov // Chemistry of Heterocyclic Compounds. -2014. Vol. 50. \cancel{N} 9. P. 1259-1269.
- 10. Dyadyuchenko L.V. Synthesis and properties of some new nicotinoyl isocyanates and their fragmentation under electron impact / L. V. Dyadyuchenko, S.N. Michaylichenko, I. G. Dmitrieva, V.N. Zaplishny // Chemistry of Heterocyclic Compounds. 2005. Vol. 41. № 4. P. 466-470.
- 11. Patent № 4342587, CShA. Lewitt G. Herbicidal pyridinesulfonamides. Opublikovano 03.08.1982.
- 12. Nakanisi K. Infrakrasnye spektry i stroenie organicheskih soedinenij. M: Mir, 1965. S. 53.
- 13. Dyadyuchenko L.V. Synthesis, properties, and special features of the fragmentation under electron impact of N-substituted nicotinoyl ureas impact / L. V. Dyadyuchenko, S.N. Michaylichenko, I. G. Dmitrieva, V.N. Zaplishny // Chemistry of Heterocyclic Compounds. $-2005.-Vol.\,41.-No.\,5.-P.\,606-612.$