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It is broadly accepted that climate—economic maagll(Integrated

Assessment modelling) inevitably implies substdniracertainties [8]. One of

established approaches for taking into accounethesertainties is performing

Monte Carlo simulations with Integrated Assessmmaatlels (IAMs) [4, 6, 8].

The idea of the method is that instead of one mndeh series of model runs is

performed with model parameters that are likelyo&éoresponsible for critical

uncertainties randomly varying from one model ronahother, and then the

probability distributions of output model variableSinterest are constructed on

the basis of these model runs.

Given the complexity of state-of-the-art IAMs, mawny which need

substantial computational resources, the probwbititstributions can be
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obtained only numerically. However, in case of danpoy’ models that have
analytical solutions it might be occasionally pbssito ‘imitate’ this numeric
Monte Carlo procedure by exact analytical calcalai of probability
distributions and of moments of random output \J@des of interest. A
constructive example of such an ‘imitation’ is pad in the present paper.
The paper is organized as follows. In Sec. 2 a lginjimate—economic
model based on the AK model with the endogenousedeggion rate and on the
exogenous climate scenario is described and itiytaszd solution is obtained.
In Sec. 3 the uncertainty of climate projectionsnisoduced in the model, and
the Monte Carlo procedure is imitated. Sec.4 pmlesi some numerical

examples and discussion. Seconcludes.

2. The AK model with temper atur e-dependent depreciation rate'

The standard AK model is the simplest model of getous economic
growth [1]. In the AK model the capitakt) is the state variable, and its
dynamics obey an equation

K =(sA-0)K 1)
where < is the savings ratea is the technology parameter ard is the
depreciation rate (all parameters are assumed toohstant). According to

Eq. (1), the capital grows exponentially:

K (1) = Ko exp(ot) (2)
wherek, is the initial capital stock and
g =sA-9 (3)

Is the (background) growth rate.

! This section is based on a part of our previouskwkovalevsky D.V. Exact analytical
solutions of some behaviourist economic growth neaath exogenous climate damages.
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Following some previous theoretical work on Intégda Assessment
modelling [2, 3, 5, 7], we now assume that the deption rate is climate-
dependent, and that it increases as global warnewglves. Taking the
temperaturer(t) as a proxy of the state of the climate systemassime the
linear temperature dependence of the depreciaditen r

I(t) = &1+ £(T-Ty)) (4)
where g, is the initial value of the depreciation rateis the constant sensitivity
of depreciation rate to temperature change, anis the initial value of the
temperature. Then Eq. (1) should be rewritten enftim

K =[sA- g1+ (T -Ty)JK , (5)
or, equivalently,

K =[ry - (M -Ty)|K , (6)
where Eq. (3) has been taken into account.

For the sake of model tractability, we assume & w&nple exogenous
climate scenario with linear temperature growth:

T=Ty+l't, T =const. (7)

Then it can be easily shown that the solution af(Bjjtakes the form

K(t) =K, exp{rot —%T‘Srtz] (8)

3. Impact of uncertainty of temper atur e projections
We now assume that the parametas not known with certainty. Instead,

we represent it as a sum of its mean valyand a random term distributed

normally with zero mean value and standard deviadidy 0 N (0,6?)):

Fr=ry+y, (9)
)=~ jﬁ ex;{— Zf zj- (10)

By substituting the decomposition (9) into Eq. (& get
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K(t) = ft)a(t.y) (11)
where
f(t) =Ko exl{rot —@tﬂ : (12)
_ Foet’
g(t,y) =exg - ik (13)

It follows immediately from Eq. (11) that the mewsalue of capital at
timet is equal to
K(t) = {13 (14)
where

3= 9t y)p(dy . (15)

—00

By substituting Eqgs. (10) and (13) into Eq. (153 aaking the resultant integral

we get
_ 0y0)?
g(t) = ex;{%t‘*} : (16)
It follows then from Egs. (12), (14), and (16) that
K(t) =Kq ex;{rot _9%o2, (50‘980)2 tﬂ : (17)

We now turn to calculation of standard deviation taf) (o, (t)). It
follows from Eq. (11) that the variance eft) is equal to
Dy (t) = o (t) = f 2(Y)ag (1) (18)
where
o2 (t) = g2 () - 2() (19)
is the variance ofit,y). The second term in the r.h.s. of Eq. (19) (@#&t)) can
be obtained by squaring Eqg. (16). Regarding thst fierm in the r.h.s. of
Eq. (19) (i.e.g2(t)), we note from Egs. (13) and (15) that it is pdmd by the
same formula ag() (i.e. by Eq. (16)) if in the latter the parameteis replaced

by 2¢:
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J— o 2
g2(t) = exp{@tﬂ . (20)
Finally,
og(t) = ex;{@tﬂ(exp{%t“} —1} : (21)
and, from Eqgs. (12), (17)-(18), and (21)
o ) =K (1) \/exp{@t“}—l. (22)

4. Numerical examples and discussion

To provide several numerical results, we adoptftllewing values of
model parameters; =0.02 year (i.e. 2 percent per annumj; =0.05 year (i.e.
5 percent per annum)=0.2(°C)* (i.e. the depreciation rate doubles if mean
temperature rises by 5°Cj, =0.03°C/year (that corresponds to 3°C warming
per century),s =0.01°Clyear.

As follows from Eg. (8), the (time-dependent) growate

_KO_d

0= K(t) dt

INK(t) (23)

in the case of no uncertainty is equal to

r(t) =ry—dp&l ot , (24)
so it decreases linearly in time and eventuallyobses negative. At the same
time, according to Eq. (17), the time-dependentwjniorate of mean value of

capital in the case of uncertainty
d —
(1) == INK QO (25)
Is equal to

(5050)2 t3

rg(t) =rg =&l ot + ) (26)

and it increases at large times. The graphstpfindr,(t) are shown on Fig. 1.
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According to Eg. (8), in case of no uncertainty thmee dependence of
capital K(t) itself is given by a Gaussian curve: it first imases, reaches its
maximum att=T*/2 and then starts decreasing, dropping to the imahie K,

att=T* and ultimately converging to zero at infinite tinkéere

2ry

T* = ,
Ol o

(27)

and for numerical values of parameters specifiesyalv* is equal to 133 years.
The graph of normalized capitalt)/K, is shown on Fig. 2.

Finally, the graph of normalized mean value of X (t)/K, in case of
uncertainty is shown on Fig. 3. As seen on therégit rapidly increases at large
times.

So why the solution in case of no uncertainty idgterent in the long
run from the average solution in case of uncem&ifithe reason is in that the
values of a random variable from a ‘symmetric’ couple {y, y) contribute
asymmetrically (‘unevenly’) to the resultant monsniower-than-average
temperature growth rates contribute more than hithen-average ones. This
means that the resultant average solutions areeg@hlrbm high-end scenarios to
low-end ones when climate change matters less, thekfore the average
solution in case of uncertainty is overly much moptimistic in the long run

that the solution in case of no uncertainty.

5. Conclusions

A simple climate—economic model described in Seba8 the exact
analytical solution. Moreover, its uniqueness iatth allows introducing the
uncertainty in a tractable way and calculating piwlity distributions and
moments of model state variable in closed analytioen as well. As the
discussion in Sec. 4 has shown, the model yielsisuctive results. We believe

performing the same procedure with other ‘toy’ IAMIsat can be solved
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analytically and semi-analytically would be an neting direction of further
research. One important issue that should be askhlfesn such modelling
exercises is going beyond symmetric distributioms rhodel parameters (like
normal distribution adopted in the present papeiddress the problem of ‘fat

tails’ that is currently topical in economics oifnehte change.
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Figure 1: The time-dependent growth rates in cagenweo uncertainty ((t) , solid green line)
and with uncertaintyr(, (t), dashed red line)
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Figure 2: Normalized capital dynamics in case ofinoertainty.
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Figure 3: The dynamics of mean value of normalizaguital in case of uncertainty.
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