УДК 631.82.633.34

UDC 631.82.633.34

МИНЕРАЛЬНЫЕ УДОБРЕНИЯ НА ПОСЕВАХ

Исупова Юлия Анатольевна аспирант кафедры агрохимии Кубанский государственный аграрный университет, Краснодар, Россия

В условиях полевого опыта проведены исследования 2010-2012 гг. по изучению действия минеральных удобрений на физико-химические, агрохимические и биологические показатели почвы, а также их влияние на динамику содержания основных элементов питания в растениях сои и ее урожайность

Ключевые слова: СОЯ, УРОЖАЙНОСТЬ, МИНЕ-РАЛЬНЫЕ УДОБРЕНИЯ, НЕКОРНЕВАЯ ПОД-КОРМКА, МИНЕРАЛЬНЫЙ АЗОТ, ОБМЕННЫЙ КАЛИЙ

FERTILIZERS ON CROPS OF SOYBEAN

Isupova Yulia Anatolievna postgraduate student of the Agricultural chemistry Kuban State Agricultural University, Krasnodar, Rus-

In 2010-2012, in a field experiment, the research on the effect of fertilizers on physic-chemical, agricultural chemical and biological parameters of soil, as well as their impact on the dynamics of the content of major nutrients in soybean plants and its yield was conducted

Keywords: SOYBEAN, YEILD, FERTILIZERS, FO-LIAR APPLICATION, MINERAL NITROGEN, EX-CHANGEABLE POTASSIUM, PHOSPHORUS

Введение

Проблема дефицита растительного белка и масла, а также сохранения и воспроизводства плодородия почв в Российской Федерации становится все более актуальной и требует неотложного решения. Ее возможно решить за счет расширения посевных площадей и увеличения продуктивности зернобобовых культур. Среди них по валовому производству первое место в мире занимает соя.

Соя – белково-масличная культура, способная при соблюдении системы удобрения не только давать качественные семена, но и оставлять в почве после себя значительное количество элементов питания. В среднем на 1 га она накапливает после себя в почве азота – 60-80 кг, фосфора – 20-25 и калия – 30-40 кг, что равноценно внесению 10-15 т органических удобрений [10].

Посевы сои в Российской Федерации сосредоточены на Дальнем Востоке и в Южном Федеральном округе. В Краснодарском крае площадь этой культуры за последние годы составляла в среднем 130 тыс. га, а урожайность - 1,42 т/га. Что значительно ниже потенциальных возможностей культуры. Поэтому данная проблема является весьма актуальной в современном сельскохозяйственном производстве. Повышение продуктивности посевов сои невозможно без научно обоснованного применения минеральных удобрений. Большой вклад в решение этой проблемы внесли В.Б. Енкен, В.Т. Куркаев, Ю.П. Мякушко, В.Ф. Баранов, Н.М. Тишков

http://ej.kubagro.ru/2013/08/pdf/92.pdf

(1999), А.В. Кочеруга, В.М. Пенчуков, В.С. Петибская [1-9]. На основе этих исследований была разработана система удобрения сои. Однако вопросы рационального использования минеральных удобрений до конца не выяснены. Не изучено влияние систематического применения удобрений в севообороте на урожай и качество зерна сои, агрохимические и физикохимические показатели плодородия и биологическую активность почвы, динамику содержания элементов питания в растениях, а также их баланс в системе почва — удобрение — растение. Отсутствуют данные по реакции сои сорта Вилана на возрастающие нормы традиционных азотнофосфорно-калийных туков и их сочетаний с новым комплексным удобрением Нутривант плюс.

Цель работы: определить методом полевых исследований наиболее оптимальные нормы допосевного внесения минеральных удобрений под сою и эколого-агрохимическое обоснование перспективности включения Нутриванта плюс в ее систему удобрения на черноземе выщелоченном Западного Предкавказья.

В задачи исследований входило:

- определить действие видов и норм минеральных удобрений на физико-химические свойства чернозема выщелоченного;
- изучить особенности динамики содержания подвижных форм азота, фосфора, калия в почве;
- выявить влияние минеральных удобрений на биологическую активность почвы;
- установить влияния норм, видов минеральных удобрений на содержание элементов питания в растениях сои;
- оценить эффективность совместного применения комплексного удобрения Нутривант плюс и норм минеральных удобрений на посевах сои;
- определить урожайность семян сои в зависимости от видов, норм и соотношения минеральных удобрений.

Материал и методика исследований.

Исследования проводились в 2010-2012 гг. в учхозе «Кубань» в стационарном опыте кафедры агрохимии. По количеству выпадающих атмосферных осадков территория относится к умеренно-влажному району (коэффициент увлажнения — 0,30-0,40), по теплообеспеченности — к жаркому району. Сумма температур за период активной вегетации составляет 3567 °C.

Погодные условия в годы исследований (2010-2012 гг.) значительно различались, но были типичными для данной зоны, что в конечном счете позволяет выращивать сельскохозяйственные культуры. Почва — чернозем выщелоченный слабогумусный сверхмощный легкоглинистый на лессовидных тяжелых суглинках. В пахотном слое почвы содержится 2,81 % гумуса, реакция почвенного раствора нейтральная рН 6,4.

Изучение влияния видов, норм и соотношений минеральных удобрений на продуктивность сои и плодородие чернозема выщелоченного проводились в многофакторном полевом опыте заложенном в 1981 г. Схема опыта (\mathbb{N}_2 1) содержит 16 вариантов и является выборкой ¼ части из полной схемы $4\times 4\times 4$, образованной тремя факторами: N, P, K с использованием четырех градаций каждого -0, 1, 2, 3 дозы. Единичные, двойные и тройные нормы составляли под: сою - $N_{20}P_{40}K_{20}$, $N_{40}P_{80}K_{40}$ и $N_{60}P_{120}K_{60}$. Повторность вариантов двукратная, что допускается в связи с особенностями построения факториальных опытов и методов математического анализа их результатов. Общая площадь делянки -162 м 2 ($30\cdot 5$,4), а учетная -54,2 м 2 .

Исследования проводили в 11-польном зернопропашном севообороте: люцерна — озимая пшеница — озимый ячмень — подсолнечник — озимая пшеница — кукуруза на зерно — соя — озимая пшеница — сахарная свекла — люцерна — люцерна. Опыт развертывался на трех полях с разницей в чередовании культур в 1 год.

Минеральные удобрения: аммонийная селитра (34,6 % N), аммофос (N 23, P_2O_5 56 %) двойной суперфосфат (43 % P_2O_5) и калий хлористый (60 % K_2O) вносили под основную обработку почвы согласно схеме опыта (таблица 2).

Изучение влияния видов, норм и соотношений минеральных удобрений на урожайность сои проводили по всем 16 вариантам, остальные исследования проводили по 7 наиболее контрастным вариантам, а именно нормам и видам минеральных удобрений.

Для оценки действия некорневой подкормки комплексным удобрением Нутривант плюс на различных фонах минерального питания, был заложен опыт № 2. Схема :1) Контроль - 000, 2) Контроль с Нутривантом - 000 + H, 3) $N_{40}P_{80}K_{40}$ с Нутривантом - 222 + H, 4) $N_{20}P_{40}K_{20}$ с Нутривантом - 111 + H, 5) $N_{60}P_{120}K_{60}$ с Нутривантом - 333 + H. Изучали показатели содержания азота, фосфора и калия в растениях и в семенах сои, урожайность и ее качество в зависимости применяемых удобрений.

Минеральные удобрения были использованы такие же как и в опыте \mathbb{N}_2 1. Комплексное водорастворимое удобрение Нутривант плюс применяли путем некорневой подкормки растений сои в фазе бутонизации из расчета 3 кг/га. Повторность вариантов двухкратная. Общая площадь делянки $-54 \text{ м}^2 (10.5,4)$, а учетная -21 м^2 .

Объектом исследования был чернозем выщелоченный, сорт сои Вилана и новое комплексное удобрение Нутривант плюс.

Отбор почвенных и растительных образцов выполнялся в следующие фазы роста и развития растений сои: всходы, цветения, бобообразования, полной спелости. С учетом некорневой подкормки образцы отбирали через 10 дней после обработки растений сои комплексным водорастворимым удобрением Нутривант плюс.

Анализы проводились по общепринятым методикам в 2-х кратной повторности. Определяли в слое почвы 0-20 см гумус по методу Тюрина, влажность почвы гравиметрическим методом (ГОСТ 1396.3-92, 27548-97), рН водной, рН солевой (ГОСТ 26 483) — потенциометрическим методом; активность целлюлозоразрушающих микроорганизов по методике Федорова (1963); интенсивность дыхания почвы - по методике Штатнова; гидролитическую кислотность почвы - по методу Каппена в модификации ЦИНАО (ГОСТ 26 212-84); сумму поглощенных оснований - методом Каппена — Гильковица; в слое почвы 0-40 см послойно через 20 см аммонийный азот — колориметрическим методом с помощью реактива Несслера, нитратный азот - потенциометрическим методом (ГОСТ 26951-86), содержания подвижных форм фосфора и калия — по методу Чирикова в модификации ЦИНАО (ГОСТ 26204); емкость поглощения, степень насыщенности основаниями, а также баланс азота, фосфора и калия в почве проводился расчетным методом.

Содержание общего азота, фосфора и калия в растительных образцах определяли: азот — по Кьельдалю, фосфор — колориметрически (ГОСТ 26657-97), калий на пламенном фотометре.

Результаты исследований.

Влияние минеральных удобрений на урожай и его качество проявляется через воздействие их на физико-химические и агрохимические свойства почвы и ее биологическую активность.

Применение возрастающих норм минеральных удобрений способствовало слабому подкислению почвы: рН водной снижалась с 6,3 до 5,9

единиц. Подкисляющее действие азотно-фосфорно-калийных удобрений на почву имело место не только при совместном, но и раздельном их применении на посевах сои. Азотные удобрения по сравнению с фосфорными и калийными в большей степени способствовали ее подкислению до 6,0 единиц рН.

Увеличение кислотности почвы отразилось на показателях ее поглощающего комплекса. Сумма поглощенных оснований, емкость катионного обмена и степень насыщенности основаниями чернозема выщелоченного за изучаемый период не значительно снизилась в зависимости от норм применяемых удобрений соответственно с: 34,4 до 32,7-33,6, 36,3 мг-экв/100 г до 35,0-35,6 мг-экв/100 г, 94,7 до 92,9-94,1 %.

В период вегетации растений сои условия для накопления минерального азота в пахотном слое почвы лучше складывались при внесении минеральных удобрений (рисунок 1).

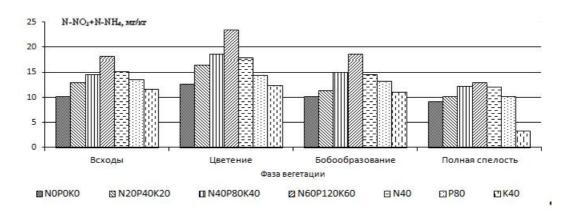


Рисунок 1 – Динамика содержания минерального азота (N-NO₃+N-NH₄) в черноземе выщелоченном на посевах сои в зависимости от норм и вида удобрений, 2010–2012 гг., (опыт № 1)

В фазу всходов растений содержание его в варианте без удобрений в 0-20 см слое почвы составило 10,2 мг/кг. Внесение одинарных ($N_{20}P_{40}K_{40}$), двойных ($N_{40}P_{80}K_{40}$) и тройных ($N_{60}P_{120}K_{60}$) норм удобрений способствовало существенному повышению содержания минерального азота в 0-20 см слое почвы на 2,7-8,0 мг/кг. На вариантах с N_{40} и P_{80} содержание минерального азота в почве было на уровне 13,5-15,2 мг/кг, причем максимальное его количество было на варианте с внесением N_{40} . К фазе цветения растений содержание минерального азота в почве возросло по всем вариантам опыта. К концу вегетации сои содержание минерального азота в почве во всех вариантах снижалось и к фазе полной спелости зерна составляло 9,1-12,9 мг/кг.

Динамика содержания подвижного фосфора в почве показана на рисунке 2. Она достаточно стабильна, несмотря на вынос фосфора растениями сои. Запасы подвижного фосфора, накопленные в почве весной, используются растениями в период вегетации, и к уборке урожая его становится меньше. Этот процесс хорошо виден на примере контрольного варианта. Так, в фазе всходов сои подвижного фосфора в почве содержалось 75,2 мг/кг, а к концу вегетации его запасы уменьшились на 11,5 мг/кг и составили 63,7 мг/кг.

Внесение минеральных удобрений оказывает положительное влияние на содержание подвижного фосфора в почве относительно варианта без удобрений. Максимально и достоверно этот показатель в фазу всходов увеличило внесение нормы полного удобрения $N_{60}P_{120}K_{60}-127,7$ мг/кг.

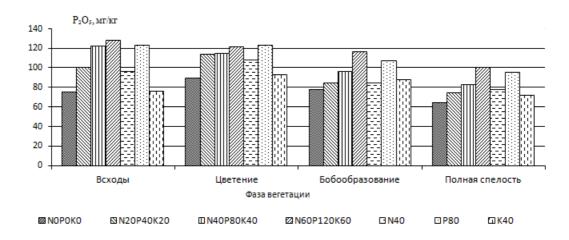


Рисунок 2 – Динамика содержания подвижного фосфора в черноземе выщелоченном на посевах сои в зависимости от норм и вида удобрений, 2010–2012 гг., (опыт № 1)

Содержание обменного калия в почве по фазам вегетации сои существенно различалось. Количество его в черноземе выщелоченном на контроле от фазы всходов до полной спелости уменьшилось с 261,3 до 186,0 мг/кг (рисунок 3).

В фазы всходов, цветения и бобообразования содержание обменного калия в почве в вариантах, где вносились удобрения, превосходило контроль соответственно на 16,0–75,4 мг/кг; 12,5–71,0 мг/кг и 10,8–70,7 мг/кг почвы. Наибольшим существенным его количеством отличались варианты $N_{60}P_{120}K_{60}$, $N_{40}P_{80}K_{40}$ и K_{40} .

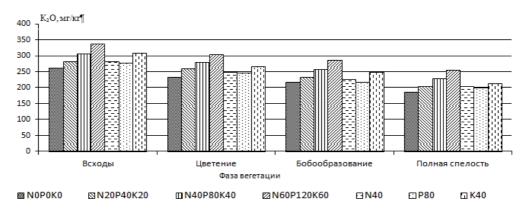


Рисунок 3 – Динамика содержания обменного калия в черноземе выщелоченном на посевах сои в зависимости от норм и вида удобрений, 2010–2012 гг., (опыт № 1)

Удобрения, являющиеся главным фактором, определяющие не только содержание подвижных форм элементов питания в почве, но и оказывают стимулирующие воздействие на микробиологическую активность почвы на всех вариантах под посевами сои (рисунок 4).

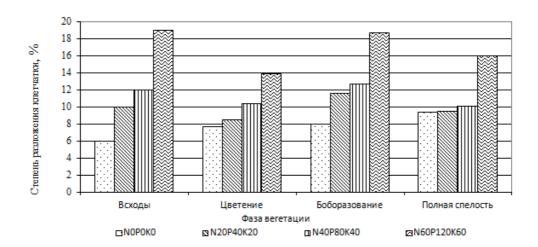


Рисунок 4 – Степень разложения клетчатки в почве (0-20 см) на посеве сои в зависимости от норм удобрений, 2011-2012 гг., (опыт № 1)

В зависимости от норм удобрений скорость разложения клетчатки в почве возросла в 1,3-2,3 раза, а интенсивность дыхания почвы на 19-41 %. Целлюлозоразлагающая активность и интенсивность дыхания почвы находилась в прямой зависимости от норм вносимых удобрений. Виды удобрений не оказывали существенного влияния на эти показатели.

Диагностика содержания элементов питания в растениях в динамике позволяет определить нуждаемость посевов в проведении подкормок. На рисунках 5-7 представлены результаты исследований по динамике содержания азота, фосфора и калия в растениях сои, выращенной на черноземе

выщелоченном, свидетельствующие о том, что в молодых растениях обнаруживалось наибольшее количество элементов питания, затем оно снижалось. Применение удобрений сказалось на содержании азота, фосфора и калия в растениях сои. Степень их воздействия зависела от нормы и вида внесенного удобрения.

В фазах всходов, цветения, бобообразования и созревания в надземных вегетативных органах растений сои азота содержалось соответственно 3,9; 2,7; 1,9 и 0,35 % сухой массы. В зависимости от нормы и вида удобрения его количество возросло в эти фазы соответственно на 0,1-1,1; 0,2-1,0; 0,1-0,8 и 0,11-0,24 % сухой массы. Максимальное достоверное его содержание в растениях сои отмечалось на вариантах $N_{40}P_{80}K_{40}$ и $N_{60}P_{120}K_{60}$ (опыт N_{2} 1).

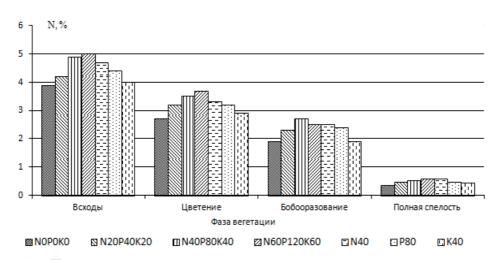


Рисунок 5 – Динамика содержания азота в растениях сои в зависимости от норм и вида удобрений, 2010-2012 гг., (опыт № 1)

В опыте № 1 содержание азота в семенах сои превышало контроль на 0,09-0,24 % в зависимости от вносимых удобрений. Наибольшее его количество в семенах отмечено при внесении минеральных удобрений $N_{60}P_{120}K_{60}$ (таблица 1).

Таблица 1 – Влияние удоб	брений на содержание	азота, фосфора и калия в
семенах сои, %,	2010-2012 гг.	

Вариант	Азот (N)	Фосфор (Р ₂ О ₅)	Калий (K ₂ O)					
Опыт № 1								
$N_0P_0K_0$ (контроль)	4,42	0,97 2,30						
$N_{20}P_{40}K_{40}$	4,68	1,04	2,49					
$N_{40}P_{80}K_{40}$	5,46	1,17	2,78					
$N_{60}P_{120}K_{60}$	5,38	1,16	2,79					
HCP ₀₅	0,04-0,20	0,03-0,08	0,11-0,13					
N_{40}	5,04	1,06	2,61					
P ₈₀	4,84	1,07	2,48					
K ₄₀	4,66	0,92	2,55					
HCP ₀₅	0,12-0,14	0,05-0,09	0,08-0,20					
Опыт № 2								
$N_0P_0K_0$	4,40	0,96	2,28					
$N_0P_0K_0+H$	4,54	1,02	2,35					
$N_{20}P_{40}K_{20}+H$	5,06	1,10	2,59					
$N_{40}P_{80}K_{40}+H$	5,67	1,22	2,83					
$N_{60}P_{120}K_{60}+H$	5,47	1,17	2,80					
HCP ₀₅	0,12-0,14	0,04-0,06	0,04-0,15					

Некорневая подкормка посевов сои комплексным удобрением Нутривант плюс из расчета 3 кг/га совместно с вариантами $N_{20}P_{40}K_{20}$, $N_{40}P_{80}K_{40}$ и $N_{60}P_{120}K_{60}$ увеличивала содержание азота в надземных вегетативных органа в фазе бобообразования растений соответственно на 0,49; 0,90 и 0,84 % сухой массы. Максимальное достоверное содержание азота в семенах сои 5,67 % наблюдалось на варианте $N_{40}P_{80}K_{40}$ + H (опыт № 2).

Минеральные удобрения оказали положительное влияние на содержание фосфора в растениях сои (рисунок 5). В фазу всходов его количество в надземных вегетативных органах растений превышало контроль на 0,06-0,47 %, во время цветения - 0,01-0,27 %, в период бобообразования - 0,09-0,24 %, в момент созревания семян - 0,02-0,11 % сухой массы (опыт N2 1). Наиболее благоприятные условия для минерального питания сои создавались на вариантах $N_{40}P_{80}K_{40}$ и $N_{60}P_{120}K_{60}$, и здесь содержание фосфора в вегетативных органах было максимально. Удобрения оказали так же положительное действие на накопление фосфора в семенах сои. Под их влиянием содержание этого элемента в семенах возросло на 0,03-0,18 %. В семенах сои содержание фосфора в зависимости от вносимых удобрений было 1,04-1,17 %.

Некорневая подкормка Нутривантом плюс совместно с допосевным удобрением в фазу бутонизации оказала положительное влияние на содержание фосфора в растениях к фазе бобообразования. На вариантах без удобрений, $N_{20}P_{40}K_{20}$ и $N_{40}P_{80}K_{40}$ его количество возросло соответственно

на 0,05 %, 0,18 и 0,28 % сухой массы и в семенах на 0,06, 0,14 и 0,26 % (опыт N_2 2).

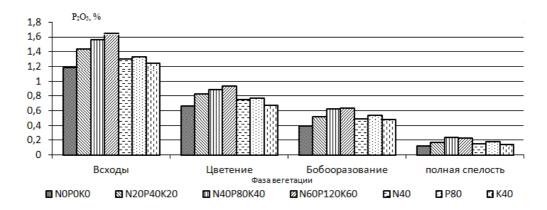


Рисунок 6 – Динамика содержания фосфора в растениях сои в зависимости от норм и вида удобрений, 2010-2012 гг., (опыт № 1)

Допосевное внесение минеральных удобрений также положительно сказалось на количестве калия в надземных органах сои во все фазы вегетации растений (опыт № 1, рисунок 6). Его содержание в вегетативных органах превышало контроль в фазы всходов, цветения, бобообразования и полной спелости соответственно на 0.25-0.28 %, 0.19-0.68, 0.28-0.68, 0.07-0.28 % сухой массы, в семенах -0.15-0.49 %.

Количество калия в растениях возрастало с увеличением нормы вносимых удобрений, и было максимальным на вариантах $N_{40}P_{80}K_{40}$ и $N_{60}P_{120}K_{60}$. Виды удобрений по степени воздействия на содержание этого элемента в надземных вегетативных органах можно расположить в следующий возрастающий ряд: фосфорные, азотные, калийные. В семенах этот порядок несколько был иной: азотные, фосфорные, калийные.

Проведенная некорневая подкормка Нутривантом плюс в фазу бутонизации в сочетании с нормами допосевного удобрения сказалась на содержании калия, также как азота и фосфора в растениях сои (опыт № 2). В фазу бобообразования в вегетативных органах растений сои калия содержалось 1,51-1,80 %. В семенах его содержание составило 2,35-2,8 %.

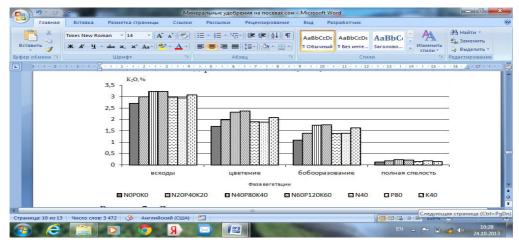


Рисунок 7 – Динамика содержания калия в растениях сои в зависимости от норм и вида удобрений, 2010-2012 гг., (опыт № 1)

Вносимые под сою минеральные удобрения оказали положительное влияние на высоту растений, количество листьев и массу сухого вещества. В фазы всходов, цветения и бобообразования увеличивалось высота растений на 2,9-7,7 см, 1,4-10,8 и 7,2-15,5 см, количество листьев на 0,4-2,0 шт./растение, 1,9-4,4 и 1,1-3,3 шт./растение, сухая масса одного растения на 0,01-0,04, 0,2-1,1 и 0,2-1,0 г соответственно. Максимальные показатели отмечены на вариантах с внесением норм удобрений $N_{40}P_{80}K_{40}$ и $N_{60}P_{120}K_{60}$ (опыт N_{20} 1).

На естественном уровне плодородия почв урожайность сои по годам колебалась в пределах — 1,07-1,97 т/га и в среднем составила 1,37 т/га (таблица 2). Удобрения оказали существенное влияние на величину урожайности. Внесение $N_{20}P_{40}K_{20}$ повышало ее на 0,20 т/га, $N_{40}P_{80}K_{40}$ — 0,44, $N_{60}P_{120}K_{60}$ — 0,36 т/га. Из видов минеральных удобрений в большей степени на урожайность сои оказали влияние фосфорные (P_{80}), увеличив ее на 0,27 т/га (19,9 %), затем азотные (N_{40}) — 0,19 (14,0 %), и в наименьшей степени калийные (K_{40}) — 0,18 т/га (13,1 %). Наибольшая урожайность получена при их совместном применении в норме $N_{60}P_{120}K_{20}$ - 1,69 т/га (25,5 %).

Проведение некорневой подкормки Нутривантом плюс в фазу бутонизации сои на разных фонах минерального питания оказывает положительное влияние на ее урожайность (опыт № 2). Так, некорневая подкормка на естественном уровне плодородия увеличивала урожайность на 0,1 т/га, совместно с нормой $N_{20}P_{40}K_{20}$ на 0,32 т/га, $N_{40}P_{80}K_{40} - 0,53$ т/га и на $N_{60}P_{120}K_{60} - 0,39$ т/га.

Таблица 2 – Урожайность сои в зависимости от минеральных удобрений

Вариант	Урожайность по годам, т/га				Прибавка урожайности,				
	2010	2011	2012	Средняя	т/га	%			
Опыт № 1									
Контроль	1.09	1.07	1,97						
$(N_0P_0K_0)$	1,08	1,07	1,97	1,37	_	-			
N ₄₀	1,24	1,19	2,26	1,56	0,19	13,8			
P ₈₀	1,31	1,26	2,37	1,65	0,27	20,4			
K ₄₀	1,19	1,13	2,20	1,51	0,13	10,2			
$N_{40}P_{80}$	1,20	1,21	2,26	1,56	0,18	13,8			
$N_{40}K_{40}$	1,23	1,19	2,22	1,55	0,17	13,1			
$P_{80}K_{40}$	1,18	1,16	2,21	1,52	0,14	10,9			
$N_{40}P_{80}K_{40}$	1,41	1,43	2,59	1,81	0,44	32,1			
HCP ₀₅	0,035	0,042	0,060						
$N_{20}P_{40}K_{20}$	1,25	1,22	2,33	1,60	0,23	16,7			
$N_{60}P_{40}K_{20}$	1,30	1,30	2,27	1,62	0,25	18,2			
$N_{20}P_{120}K_{20}$	1,40	1,26	2,20	1,62	0,25	18,2			
$N_{20}P_{40}K_{60}$	1,30	1,23	2,12	1,55	0,18	13,1			
$N_{60}P_{120}K_{20}$	1,37	1,36	2,35	1,69	0,32	23,3			
$N_{60}P_{40}K_{60}$	1,39	1,29	2,16	1,61	0,24	17,5			
$N_{20}P_{120}K_{60}$	1,22	1,33	2,28	1,61	0,24	17,5			
$N_{60}P_{120}K_{60}$	1,32	1,38	2,47	1,72	0,35	25,5			
HCP ₀₅	0,034	0,037	0,080						
Опыт № 2									
Контроль	1,03	1,07	1,94	1,35					
$(N_0P_0K_0)$	1,03	1,07	1,94	1,33	-	-			
$N_0P_0K_0 + H$	1,12	1,08	2,16	1,45	0,10	7,4			
$N_{20}P_{40}K_{20} + H$	1,29	1,23	2,49	1,67	0,32	23,7			
$N_{40}P_{80}K_{40} + H$	1,45	1,54	2,70	1,90	0,55	40,7			
$N_{60}P_{120}K_{60}+H$	1,33	1,42	2,51	1,75	0,40	29,6			
HCP ₀₅	0,05	0,09	0,17						

Повышение урожайности произошло за счет увеличения числа бобов, количества и массы зерна с 1 растения, а также массы 1000 зерен. Так при внесении $N_{40}P_{80}K_{40}$ количество бобов на одном растении возрастало на 15,3 шт., зерен — на 34,9 шт., масса 1000 зерен — на 29,7 г (опыт N_{2} 1).

Выводы.

- 1. За годы исследований под влиянием минеральных удобрений достоверно снижалась рН водной на 0,3-0,4 единиц рН. Гидролитическая кислотность, сумма поглощенных оснований, емкость катионного обмена, степень насыщенность основаниями изменялась не существенно.
- 2. Содержание минерального азота в черноземе выщелоченном под посевами сои было минимальным в фазу всходов на варианте без удобрений http://ej.kubagro.ru/2013/08/pdf/92.pdf

-10,2 мг/кг. Вносимые минеральные удобрения существенно увеличивали его содержание до 18,2 мг/кг — при внесении $N_{60}P_{120}K_{60}$. Из видов минеральных удобрений в большей степени оказывали достоверное влияние азотные (N_{40}). В течении вегетации сои количество минерального азота максимально накапливалось к фазе цветения и снижалось к фазе полной спелости.

Применение удобрений оказывало значительное влияние на содержание подвижного фосфора и обменного калия в черноземе выщелоченном. По сравнению с контролем их количество существенно возрастало при применении полного минерального удобрения в норме $N_{60}P_{120}K_{60}$ соответственно на 39,9 и 73,7 мг/кг.

- 3. Удобрения стимулировали жизнедеятельность почвенных целлюлозоразрушающих микроорганизмов на посевах сои. В сравнении с контролем скорость разложения клетчатки достоверно увеличилась в зависимости от норм удобрений в 1,1-2 раза. Действие видов удобрений на данный показатель было не достоверным. Целлюлозоразлагающая активность увеличивалась пропорционально возрастанию нормы удобрений. В фазу всходов растений сои и бобообразования интенсивность дыхания почвы была максимальной.
- 4. Минеральные удобрения благоприятствовали большему потреблению и утилизации элементов питания растением сои, повышению их накопления в вегетативных органах, а также более активному оттоку ассимилянтов в генеративные органы. В фазы всходов, цветения, бобообразования и созревания содержание азота в сухих надземных вегетативных органах существенно превышало контроль соответственно на 0,1-1,1; 0,2-1,0; 0,3-0,6 и 0,09-0,024 %, фосфора − 0,06-0,47; 0,01-0,27; 0,1-0,24 и 0,03-0,11 %, калия − 0,25-1,5; 0,21-0,68; 0,29-0,68 и 0,08-0,28 %. Под воздействием удобрений в семенах накапливалось больше азота, фосфора и калия соответственно на 0,3-1,0; 0,03-0,16 и 0,15-0,48 %. Максимальное содержание элементов питания в растениях сои наблюдается на варианте с применением $N_{40}P_{80}K_{40}$ (опыт № 1).
- 5. Улучшение обеспеченности посевов сои элементами минерального питания за счет внесения удобрений оказало положительное влияние на рост растений. В фазы цветения и бобообразования сухая масса надземных вегетативных органов одного растения достоверно превышала контроль на вариантах $N_{40}P_{80}K_{40}$ и $N_{60}P_{120}K_{60}$ 0,8-0,9 и 0,7-0,8 г, средняя высота растения на 8,9-10,8 и 13,7-15,5 см, среднее количество листьев на 1 растении 3,5-4,4 и 2,8-3,3 шт. (опыт № 1).

6. Урожайность сои на варианте с естественным уровнем плодородия почвы (контроль) в среднем за 3 года составила 1,37 т/га . Удобрения в разной степени, обеспечивают повышение урожайности семян. Наибольшая достоверная прибавка (опыт 1), равная 0,44 т/га получена на варианте $N_{40}P_{80}K_{40}$ (HCP $_{05}$ = 0,04-0,08). В опыте № 2 некорневая подкормка Нутривантом плюс совместно с применением $N_{40}P_{80}K_{40}$ обеспечила прибавку — 0,52 т/га.

Литература

- 1. Баранов, В.Ф. Соя биология и технология возделывания / В.Ф. Баранов. Краснодар, 2005. 399 с.
- 2. Енкен, В. Б. Соя. М.: Сельхозгиз, 1959. 622 с.
- 3. Кочегура, А.В. Селекция сои на повышение сбора белка с гектара. Автореф. дис ... канд. с.-х. наук: 06.01.05. Краснодар, 1962. 21 с.
- 4. Куркаев, В.Т. Агрохимия: учебник / В.Т. Куркаев, А.Х. Шеуджен Майкоп, ГУРИПП Адыгея, $2000.-552~\mathrm{c}.$
- 5. Мякушко, Ю.П. Селекция сортов сои для Северного Кавказа / Ю.П. Мякушко, Н.Д. Лунин, Д.В. Подкина, Н.В. Качегура / В кн.: Селекция, семеноводство и технология возделывания технических культур. М., 1980. С. 59-68.
- 6. Онищенко, Л.М. Удобрения и продуктивность сои / Л.М. Онищенко // Удобрения и урожай: Материалы Региональной научно-практической конференции, Краснодар, 8-10 дек. 2004. Майкоп, 2005. С. 317-324.
- 7. Петибская, В.С. Соя: качество, использование, производство/ В.С. Петибская, В.Ф. Баранов, А.В. Кочегура, С.В. Зеленцов М.: Аграрная наука, 2001. 64 с.
- 8. Тишков, Н.М. Продуктивность сои при некорневой подкормке растений микроудобрениями и обработке регуляторами роста на черноземе выщелоченном / Н.М. Тишков, Н.Г. Михайлюченко, А.А. Дряхлов // Масличные культуры / ВНИИМК. 2007. № 2(137). С. 91-97.
- 9. Шеуджен, А.Х. Питание и удобрение зерновых бобовых культур / А.Х. Шеуджен. Краснодар: КубГАУ. 2012. 56 с.
- 10. http://www.agrocounsel.ru/vyraschivanie-soi

References

- 1. Baranov, V.F. Soja biologija i tehnologija vozdelyvanija / V.F. Baranov.– Krasnodar, 2005. 399 s.
- 2. Enken, V. B. Soja. M.: Sel'hozgiz, 1959. 622 s.
- 3. Kochegura, A.B. Selekcija soi na povyshenie sbora belka s gektara. Avtoref. dis kand. s.-h. nauk: 06.01.05. Krasnodar, 1962. 21 s.
- 4. Kurkaev, V.T. Agrohimija: uchebnik / V.T. Kurkaev, A.H. Sheudzhen Majkop, GURIPP Ady-geja, 2000. 552 s.
- 5. Mjakushko, Ju.P. Selekcija sortov soi dlja Severnogo Kavkaza / Ju.P. Mjakushko, N.D. Lunin, D.V. Podkina, N.V. Kachegura / V kn.: Selekcija, semenovodstvo i tehnologija vozdelyvanija tehnicheskih kul'tur. M., 1980. S. 59-68.
- 6. Onishhenko, L.M. Udobrenija i produktivnost' soi / L.M. Onishhenko // Udobrenija i urozhaj: Materialy Regional'noj nauchno-prakticheskoj konferencii, Krasnodar, 8-10 dek. 2004. Majkop, 2005. S. 317-324.
- 7. Petibskaja, V.S. Soja: kachestvo, ispol'zovanie, proizvodstvo/ V.S. Petibskaja, V.F. Baranov, A.V. Kochegura, S.V. Zelencov M.: Agrarnaja nauka, 2001. 64 s.

- 8. Tishkov, N.M. Produktivnost' soi pri nekornevoj podkormke rastenij mikroudobre-nijami i obrabotke reguljatorami rosta na chernozeme vyshhelochennom / N.M. Tishkov, N.G. Mihajljuchenko, A.A. Drjahlov // Maslichnye kul'tury / VNIIMK. 2007. № 2(137). S. 91-97. 9. Sheudzhen, A.H. Pitanie i udobrenie zernovyh bobovyh kul'tur / A.H. Sheudzhen. Krasnodar: KubGAU. 2012. 56 s.
- 10. http://www.agrocounsel.ru/vyraschivanie-soi