УДК 712

МЕТОДЫ КОМПЛЕКСНОГО АНАЛИЗА ПРИРЕЧНЫХ ТЕРРИТОРИЙ ДЛЯ МНОГОНАСЕЛЕННОГО ГОРОДА (НА ПРИМЕРЕ ГОРОДА МОСКВЫ)

Федосеева Ольга Сергеевна г. Москва, Россия

В работе предложены методы комплексного анализа приречных территории в г.Москва. Обсуждаются наиболее важные результаты

Ключевые слова: ПРИРЕЧНЫЕ ТЕРРИТОРИИ, МЕТОДЫ КОМПЛЕКСНОГО АНАЛИЗА, ТИПОВАЯ ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ ПРИРЕЧНОЙ ТЕРРИТОРИИ, ЛАНДШАФТНЫЕ ВЫДЕЛЫ

UDC 712

METHODS OF COMPLEX ANALYSIS RIVERINE TERRITORY FOR POPULOUS CITY (THE CASE OF MOSCOW)

Fedoseeva Olga Sergeevna *Moscow, Russia*

This article proposes the methods for the integrated analysis of riverside areas in Moscow. The most important results have been discussed

Keywords: RIVERSIDE AREA, METHODS OF COMPLEX ANALYSIS, FUNCTIONAL MODEL OF TYPICAL RIVERINE AREA, LANDSCAPED AREAS

К настоящему времени, в связи с ростом численности населения в г. Москве возросла потребность в кратковременном отдыхе в черте самого города. Одним из главных градообразующим компонентом г. Москвы является её реки (в частности реки Москва, Сетунь, Сходня, Лихоборка). Приречные территории для многонаселенного города имеют важное санитарно-гигиеническое, эстетическое социальное значение. организации благоустройства Существующие схемы И озеленения приречных территорий для кратковременной рекреации и транзита не могут свести к минимуму значения рекреационных нагрузок на этих территориях. Как следствие, - возникает потребность в функциональной организации этих территорий, отвечающей современным социальным и градостроительным условиям.

Целью исследования является разработка методов функциональной организации приречных территорий на основе их комплексного изучения.

Практическое значение работы состоит в том, что внедрение результатов исследования в практику проектирования благоустройства и озеленения приречных территорий позволит ландшафтным архитекторам принимать более эффективные решения, которые бы привели к повышению устойчивости приречных территорий к антропогенным

воздействиям. С практической точки зрения важно иметь систему методов, позволяющих комплексно оценить состояние приречных территорий для целей их эффективной функциональной организации.

Объектами исследования стали: природные заказники «Воробьёвы Сетуни», природно-исторический горы», «Долина p. парк «Москворецкий», ландшафтный заказник «Долина р. Сходни в **Куркино»**, часть долины реки **Лихоборки**. Выбор объектов определен тем, что объекты исследования расположенный в черте многонаселенного города имеют различные юридические статусы и включают различные режимы регулирования градостроительной деятельности. Специфика приречных территорий определяется особым пойменным рельефом местности и их значительной линейной протяжённостью. На всём протяжении территории степень её использования населением различна. Это определяет существующие механизмы и подходы к разработке мероприятий по благоустройству и озеленению приречных территорий. Сегодня мероприятия осуществляются локальными зонами и учитывают только существующую градостроительную ситуацию. Результатом такого подхода является современное состояние всех приречных городских территорий. Здесь – развитая сеть спонтанных очагов рекреации, высокая степень загрязненности территорий ТБО (в т.ч. территорий, имеющих статус особо охраняемых природных) и пр. Снижен уровня личной безопасности для отдыхающих горожан.

Предложенная методика включает в себя два вида исследований. Первый вид исследований позволяет провести комплексный анализ состояния природных комплексов приречных территорий [1], второй описать существующее функциональное зонирование и состояние благоустройства на данных территориях.

Использованы следующие **методы и способы** проведения исследовательских работ:

- **1.** Способ картограмм. Для оценки состояния территорий, включенных в исследование, суммарная площадь которых составляет 2517,2 га, было произведено деление территории на квадраты, со стороной равной 2,0 км. Выбор длины стороны квадрата обусловлен тем, что работа проводилась с картографическим материалом в масштабе 1:20 000. Размеры квадратов картограммы удобны для представления результатов комплексного анализа в графической форме.
- 2. Маршрутно-визуальный метод.
- 3. Экспертная оценка. Для объектов исследования, общей сложностью 900 квадратов картограммы выбрано 28 экспертов. Все эксперты были ознакомлены с программой работ. При выборе экспертного состава предъявлялись следующие требования: наличие профильного высшего образования (инженер садово-паркового и ландшафтного строительства), стаж работы по профессии от 2 лет. Эксперты привлекались для оценки территорий, согласно маршрутной карте. Проводимый социологический опрос посетителей объектов обследования дополнительно позволил выявить потребности посетителей в рекреации.
- **4. Метод картирования.** Метод картирования применен для разработки маршрутной карты, используемой экспертами, схемы размещения установленных в ходе обследования ландшафтных выделов; а так же для составления цветографической схемы существующего благоустройства приречных территорий,

Описание основных характеристик природного комплекса на территориях исследуемых объектов велось по следующим показателям:

Рекреационная дигрессия оценивалась по пяти стадиям:

1 стадия – ненарушенность и полный набор характерных элементов данного типа леса;

- 2 стадия вытоптанность покрова да 5 % площади и наличие на опушках новых, на характерных для данного типа леса видов;
- 3 стадия покров вытоптан на 10-15%, подстилка минимальная, имеет место внедрение луговых трав, подрост не благонадежен;
- 4 стадия покров отсутствует на 15- 20 % площади, растительность в основном ярусе, подросте и подлеске располагается куртинно;
- 5 стадия 60-100% поверхности почвы без покрова, в составе преобладают сорные виды, подрост отсутствует, в насаждении большая освещенность, деревья больные и с механическими повреждениями.

Рекреационная плотность оценивалась, как единовременное количество посетителей вида рекреации на единице площади за период измерений (1час).

Rd чел./га (NxS) – площадь S га, количество посетителей – N чел.

Категории состояния насаждений описывались согласно категориям, установленным Н.С. Казанской (табл. 1):

Таблица 1 (сокращенная версия) – Категории состояния насаждения

Категория	Насаждения				
состояния	Хвойные	Лиственные			
1	2	3			
1	Здоровые	Здоровые			
2	Ослабленные	Ослабление			
3	Сильно ослабленные	Сильно ослабленные			
4	Усыхающие	Усыхающие			
5	Свежий сухостой	Усыхающие			
6	Старый сухостой	Сухостой			

Введено понятие «**информативность ландшафта**». Она определялась, как количество и качество информации, получаемой человеком, пребывающим в том или ином природном комплексе. Она оценивалось по 4 категориям:

- 1 категория участки, имеющие характерный рельеф для речной долины; находящиеся вблизи реки или водоёма; имеющие на своей территории здоровые древесные растения;
- 2 категория участки, имеющие характерный рельеф для речной долины; находящиеся удаленно от реки или водоёма; имеющие на своей территории здоровые древесные растения;
- 3 категория лесные участки, не имеющие явно выражено структуры рельефа речной долины; удаленные от реки или водоемов; имеющие на своей территории ослабленные древесные растения;
- 4 категория участки, претерпевшие значительные антропогенные изменения и утратившие полностью или частично структуру рельефа; удаленные от реки или водоемов; имеющие на своей территории ослабленные древесные растения.

Рекреационная оценка велась по 4 баллам:

- 1 балл участки, имеющие 1 класс проходимости, обеспеченные благоустроенными пешеходными дорогами, позволяющие организовать не менее 3 видов отдыха, находящиеся вблизи водоёмов и примыкающие к жилой застройке или учреждению отдыха;
- 2 балл участки, имеющие 2 класс проходимости, обеспеченные не благоустроенными пешеходными дорогами, позволяют организовать не менее 2 видов отдыха, водоемы удалены, пешеходная доступность от жилой застройки или учреждения отдыха до 30 мин.
- 3 балл участки, имеющие 2 класс проходимости, имеют не благоустроенные тропы, возможна организация одного вида отдыха, водоемы удалены, пешеходная доступность до 1 часа.
- 4 балл участки, имеющие 3 класс проходимости, лишены дорог, удалены от водоемов, пешеходная доступность более 1 часа.

Для определения рекреационного давление территории для 5 стадий рекреационной дигрессии учитывались: сезон рекреации и количество

дней, привлекательных для посещения объектов населением (без жидких осадков и низких температурных значений).

$$Rs=(Rc* t*T)/S$$
 (1)

где Rs - рекреационное давление;

Rc - рекреационная ёмкость, чел./га/ча;

t- ссреднее арифметическое значение продолжительности светлого времени суток в г. Москва составляет: (17,4 часа + 7,2 часа) / 2 = 12,3 часа (что приближенно соответствует продолжительности светлого времени суток в сентябре месяце- 12,7 часов)), ч;

Т - количество дней, привлекательных для посещения объектов населением (без жидких осадков и низких температурных значений) для г. Москвы составляет 212, дней/год;

S – площадь, га.

Таблица 2 - Рекреационное давление для приречных территорий

Стадия Площадь		Значение	Среднее	Значение	
рекреационно		рекреационной	1	рекреационного	
й дигрессии		плотности,	е значение	давления,	
		чел./га/час		чел./га/год	
1	2	3	4	5	
1	539,8	114	2,11	10	
2	404,1	291	7,20	46	
3	1140,4	3174	27,83	64	
4	319,0	508	15,92	130	
5 111,7		210	18,80	439	

Картирование позволило установить 180 ландшафтных выделов. Размеры ландшафтных выделов, объединенных пространственными характеристиками, имеют площади от 0,3 до 1,2 га. Картирование позволило определить характер их пространственного распределения. Эта схема лежит в основе функционального зонирования.

Комплексный анализ установленных ландшафтных выделов осуществлялся с помощью установления индекса соответствия референтных моделей с индексами эталонной модели. Значение индекса

эталонной модели соответствует «1,0», а референтных моделей от «0,2» до «0,8».

Таблица 3 - Критерии оценки для установления индексов при комплексном анализе ландшафтных выделов

Значе ние индекс а	Влажнос ть	Рельеф	Возрастная структура растений	Полнота древостоя	
1,0	Мезо- гигрофил ьные (влажные)	Наличие выраженной структуры речной равнинной долины (склоны, дно, подошва склонов, бровка, террасы) – 2 или 3 структур.	Присутствуют старовозрастн ые, средневозрастн ые насажденияи молодняки	эталонный древостой: отношение сумм площадей поперечных сечений стволов деревьев на 1 га составляет: 0,75 — среднеполнотны е насаждения	
0,8	Мезофил ьные (свежие)	Наличие одной из структур речной равнинной долины	Преобладают старовозрастн ыенасаждения и молодняки; отсутствуют средневозратн ые насаждения	полнота древостоя: 0,6	
0,6	Гигрофо льные (сырые)	Участок с положительными и отрицательными формами мезорельефа без признаков речной равнинной долины	Преобладают средневозрастн ые насаждения, отсутствуют старовозратны е насаждениями молодняки	полнота древостоя: 0,45	
0,4	Ультра- гигрофил ьные (болота)	Участок с положительными и отрицательными формами микрорельефа без признаков речной равнинной долины	Преобладают молодняки, отсутствуют старовозратны е и средневозрастные насаждения	полнота древостоя: 0,3	
0,2	Мезо- ксерофол ьные (сухие)	Равнинный участок местности или значительно преобазованный вследствие антропогенной деятельности	Присутствуют только старовозрастн ые насаждения	полнота древостоя:0,15	

Для установления индекса породного состава древесных растений, подроста, подлеска, рудеральных трав использован следующей метод:

$$1 - ((\Delta a^* a_{_{3T.}} + \Delta b^* b_{_{3T.}} + \Delta c^* c_{_{3T.}} + \Delta d^* d_{_{3T.}}) / (a_{_{3T.}}^2 + b_{_{3T.}}^2 + c_{_{3T.}}^2 + d_{_{3T.}}^2))$$
 (2)

где: $\Delta a = a_{\text{эт.}} - a_{\phi \text{акт.:}} a S_1 b S_2 c S_3 d S_4 ...,$ где a,b,c,d- количественное участие вида в насаждении;

 S_i – вид растения.

Породный состав эталонной модели:

Древесные растении: 8Д 2Кл 2Б; 7Е 3Б + Ос; 6Л 4Кл +С; 5С 3Б 2Лп;

Подрост: 4Ив 3Вз 2Б 1Ол; 7Б 3Ол; 7Кл 3Вз; 6Яс 4Ос, где

Подлесок: 6Лщ 2Жм 2Бт; 4Рб 4Лщ 2Чн; 7Чм 3См;4Бр 3Кр 2Мл 1Чн, ГДЕ Травы. Тип 1: медуница, сныть, страусник. Тип 2: хвощ, ветреница, недотрог. Тип 3: ясменник, тысячелистник, кочедыжник. Тип 4: осока, толокнянка, звездчатка.

Для объектов исследования установлено:

- 1) среднее значение индекса соответствия референтного объекта эталонной модели равно «0,7». Это даёт основание полагать, что выявленные ландшафтные выделы устойчивы к антропогенным воздействия, но нуждаются в дополнительных мероприятиях, повышающих эту устойчивость;
- 2) объекты исследования испытывают на своем протяжении не равномерные рекреационные нагрузки. Отсутствует прямая взаимосвязь межу количеством посетителей и стадией рекреационной дигрессии. Достоверность данной зависимости (достоверность аппроксимации) 0,1203. Это стало основанием для определения влияния свободных показателей на значение рекреационной нагрузки;
- 3) прослеживается прямая взаимосвязь между площадью объектов, включенных в исследование и значением рекреационной плотности. Достоверность данной зависимости (достоверность аппроксимации) 0,8796:

- 4) устойчивые к антропогенным воздействиям ландшафтные выделы не имеют связи между собой из-за несбалансированного рекреационного использованием общей площадью исследованных территорий;
- 5) установление системы взаимосвязанных ландшафтных выделов позволит сохранить каркас природного комплекса приречной территории.

Для целей комплексного исследования функционального комплекса и качества благоустройства приречных территорий было предложено исследовать эффективность функционирования существующего благоустройства и его способность принимать на себя рекреационные нагрузки.

Для разработки типовой функциональной модели [2] благоустройства приречных территорий были классифицированы основные функции благоустройства приречных территорий. Для разработки функционального комплекса были использованы материалы, полученных в ходе составления схемы исторических срезов функционального использования объектов, включенных в исследование и цветографической схемы существующих видов благоустройства этих территорий. Это позволило установить сценарий функционирования объектов, включенных в исследование; оценить подходы к благоустройству в перспективных проектах развития благоустройства объектов, включенных в исследование.

Установлено, что неравномерное распределение активности по территории, обусловленное неэффективным функциональным зонированием.

Функциональный комплекс [2] позволил выделить 90 критериев для оценки качества благоустройства на приречных территориях и сформулировать рекомендации по ландшафтной организации этих территорий.

На основании комплексного анализа природного комплекса установлены значения баланса благоустройства этих территорий.

Таблица 4 - Нормы благоустройства для приречных территорий

Нормативная		Об	щая	Баланс территории, %			Радиус обслуживания		
площадь, га		пл	оща						
		дь	, га						
на 1	на 1			Зеленые	Дорож	Здания,	Расст	Время	Время
жите	посетит			насажде	ки и	сооруже	ояние	пешком,	на
ля	еля			ния	площа	ния	, KM	мин	трансп
					дки				орте,
									мин
2	3	4	5	6	7	8	9	10	11
6,2	45	-	180	7-12	7-10	0,1-0,5	6,0	40	-

В результате: предложена методика комплексного исследования состояния приречных территорий и их функциональных комплексов в черте многонаселенного города - г. Москвы. Предложено вести картирование границ ландшафтных выделов для целей эффективного функционального зонирования данных территорий.

Список литературы:

- 1. Федосеева, О.С. Эколого- и ресурсосберегающие технологии восстановления особо охраняемых природных территорий. Методика исследования. Комплексный многофакторный анализ // Основные направления научно-педагогической деятельности факультета ландшафтной архитектуры: научные труды. М.: ГОУ ВПО МГУЛ, 2010. вып. 348.- с. 31-33.
- 2. Федосеева, О.С. Эколого- и ресурсосберегающие технологии восстановления особо охраняемых природных территорий. Типовая функциональная модель территории // Основные направления научно-педагогической деятельности факультета ландшафтной архитектуры: научные труды. М.: ГОУ ВПО МГУЛ, 2010. вып. 348.- с.34-36.