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It is known, that the binding energy of nucleons in atomic nuclei depends
on a regular motion of protons and neutrons in the nuclear shells, and on the
chaotic behaviour of nucleons, which correlates with uncertainty in the
measurement of the mass of the nuclides [1-3]. The concept of quantum chaos
[4-5] isthe basic model of chaotic behaviour of the nucleons.

We consider the model of the bifurcation of the binding energy in atomic
nuclei, based on the generalized dynamics of the Verhulst-Ricker-Planck
equation [6]. To derive the equations of the model the results of the theory of
strong interactions of nucleons in nuclei [7-8] used. According to this theory
there is a relationship between the size of the nucleus, binding energy and the

interaction parameter, which can be written as follows:
rE=49"=b(A)A (1)
Here, A= N + Z - the number of nucleons (protons + neutrons), as the

units used the speed of light, Planck constant and electron mass. The binding

energy is determined by the number of nucleons with a total mass of proton and
electron, thus E = A(m,/m,+1)- M ,/m,
Since equation (1) must be shared with the standard expression of the size

of the nucleus, T (A) = r,A"® reflecting the weak compressibility of nuclear

matter, we can define the left-hand side of equation (1) using experimental data
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[9]. As a result, we find the product of the binding energy and nuclei radius
depending on the number of nucleons - Fig. 1. For consistency with the data [9],
we put

b (A) =0.05325 In A
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Fig. 1. The product of the binding energy and nuclel radius depending on

the number of nucleons according to [9].

Using this correlation, we can represent equation (1) as

E,=DbA/r, (2)
Now we can construct a discrete model of the energy levels in nuclei as
follows:
> _ b(A+D(A+1)(b(A)A)* _
EA+1EA - 2 -
r.A+er
A 4pr,

b(A+1)(A+1)(b(A)A)?
Apr2 13 3A . ( ) (b (A)A)

3)
On the other hand, the density of nucleons can be related to the binding

energy dueto Fermi-Dirac statistics, we have
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N = A _ g,Z2/A N gyN/A
AT 4pri/3 el 11 gEnmla yq (4)

Here 9:.E;,m.q are the weight factors, energy and chemical potential
of protons and neutrons, and the dtatistical temperature of the nucleon,
respectively. Model (3) - (4) was investigated in a wide range of parameters. Let
us consider the results obtained in the simplified model under the condition of
equality of chemical potentials and energy of the two types of nucleons

mg=m,=m,=qlna, E,=E =-E,/A.

In this case, the model can be written as

Ko@+1/ A)?*b?(A)b (A+1)

XA+1XZ = e- XA +a
E 4p
X, = — K,= a
A Aq 0 3Aq 3 gA (5)

g,=9y +0,; b(A)=0.05325 In A
To close the model (5), it is necessary to formulate the law of temperature
and the weight factor change with the number of nucleons. We use a simple
hypothesis, which follows from the theory of the Fermi gas of elementary
particles [10] that these parameters are proportional to the cube of the boundary
momentum, which in turn is determined by the size of the system:
q =k, Ps, 9a =K, Pg, Ps = Kg /T, (6)
Hence, we find that the temperature and the weight factor decreases with
increasing number of nucleons as follows
q=ToA"?, g,=g,A"” (7)
Under conditions (6)-(7), the parameter K, on the right side of equation

(5) does not depend on the number of nucleons. Let us consider the behaviour of
the chemical potential depending on the number of nucleons. Above we assume
that the chemical potentials of protons and nucleons are equal and, moreover,
their relation to temperature is a constant, which coincides with the logarithm of

the fine structure constant. To test this hypothesis, let consider functions
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f(A)=-m,/qIn137
f,(To) =& f(A)/ & AN,Z) (8)

A3 12 A3 12
Using data [9] and equations (5) - (7), we can calculate functions (8) — see
Fig. 2-3. Data [9] plotted in Fig. 2-3 show that the chemical potential of
nucleons reaches the theoretical value M, =g Ina for the number of nucleons

over 12 and for T, > 20 MeV . Note that the chemical potential of the bound

nucleon system is negative, whereas the chemical potential of free fermions is

positive and limited by the Fermi energy at zero temperature - see [10-11].
There is a critical point at T, » 20 MeV as it shown in Figure 3. We

suggest that rea nuclides have a temperature over critical temperature.

Therefore a constant in eg. (7) determined and a linear dependence of chemical
potential and temperature established.
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Fig. 2: Chemical potential over temperature as a function of the number of
nucleons, caculated on equations (5 - (7), and daa [9].
f(A)=-m,/qIn137 .

For light nuclei, the chemical potential, as well as other parameters of the

modél (5)-(7) deviates from the theoretical dependence (6). Nevertheless, we use
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the modd (5), starting with the deuterium nucleus contains two nucleons. We set

the starting point at X, = 0.2, As aresult, we find that the structure of energy

levels, which is implemented in a system of nucleons with higher temperature
T, = 52.858 MeV - Figure 4. In this case, the first bifurcation point for the

binding energy of light nuclei corresponds to the carbon isotope *C, and the

second bifurcation point - nickel isotope **Ni.
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Figure 3: The chemical potential parameter as afunction of T, .
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Figure 4. Binding energy per nucleon as a function of mass number
calculatedoneq. (5)-(7) at a =1/137;K, = 0.0371 .

With the number of nucleon increasing the energy levels are split series at
2, 4, 8, 16 sublevels, as shown in Figure 4. The specific structure “four rats”’,
first observed in [6], is formed by increasing parameter K - Figure 5. It was
also shown in [6] that there is the transition to chaotic behaviour in a mode (5)
intheregiona £1/137 .

It was established that the transition to chaotic behaviour in a model (5) is
also observed in violation of the equality of chemical potentials of the two kinds
of nucleons — Figure 6. If the chemical potentials of protons and neutrons are
strong differ, than the structure shown in Figure 7 forming, which superficialy

similar to the experimental dependence - Fig. 8.
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Figure 5: Binding energy per nucleon as a function of mass number
calculated on eq. (5)-(7) at a =1/137 ; K, = 0.0839 .

Let us give an interpretation of the results. Model (3) - (7) is a
thermodynamic one. It shows how the binding energy changing if one nucleon
in the nuclei added, taking into account changes in density according to the

Fermi-Dirac distribution at finite temperature. It is well known that the binding
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energy of nucleons in the nucleus depends on the number of neutrons and
protons. Standard semi-empirical formula describing the binding energy is given
by [11]

E, =a,A- a,A”*- a,Z(Z- 1 )A " - a,(N- Z)?At+a A%
(9)

a, =14;a, =13;a, =0.585;a, =19.3;a, =33d (A,N,Z)

Here are shown current values of the coefficients derived from data [9].
All coefficients are given in MeV. In this expression, the function d(AN,Z) js
defined as:

d=1 forevenZ, N;

d=-1foroddZ, N;

d =0 in al other cases.

The first and fourth term on the right side of expression (9) depend on the
kinetic energy of nucleons, which is calculated on the basis of statistics (4) at
zero temperature [11]. However, the data in Fig. 2 and eqg. (6) - (8) show that
temperature not zero and the chemical potential can be varied with temperature
by other way than theory of the Fermi gas of free particles predicts, like it
explained in [10-11] and other university books. In particular, the chemical
potential in a system of nucleons in nuclei is negative, as well as the binding
energy.

There is a minimal constant T, » 21MeV for which is till running a
linear relationship of temperature and chemical potential in the area A > 12 -

Fig. 2. Consider the solution of equation (5) in the case T, = 21MeV - Fig. 8.
There are two bifurcation points A = 25; 148 , between which the calculated

curve attached to data [9]. One branch of the solution diverges in the
region A > 300 , while the other vanishes. We can assume that in real nucle
T, » 21MeV , that agrees with the value a, =19.3MeV in the semi-

empirical equation (9). Further studies will show whether it is possible to predict
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binding energy on model (3)-(4) with accuracy exceeding the semi-empirical
equation (9).
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Figure 6: Binding energy per nucleon as a function of mass number
calculated on eq. 5)-(7) at
Ko =0.063;m, /q =-In(137 );m, /q = - In(171) .
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Figure 7: Binding energy per nucleon as a function of mass number
calculated on eg. (5)-(7) a K, =0.07;nm /q =-In137;m /q =-2In137 .
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Figure 8: Binding energy per nucleon as a function of mass number
caculatedoneq. (5)-(7) a T, = 21MeV ; K, = 0.03623

Equation (5) is a nucle statistical model describing the dynamics
associated with changes in the number of fermions a nonzero temperature. It

also can be used for a given number of nucleons in standard form [6] as follows

, K
XX = o a
i 4p 2/3 1 2 (10)
X =——, K = a 1+1/A b (A)b(A+1
' Ag 3AQ gal ) (A)b( )

Eqg. (10) is iterated from x, =1 for set of K up to asymptotic stable
statex = X(K) . Bifurcation diagram of eq. (10) plotted in double logarithmic

coordinate is shown in Figure 9. Apparently it correlates with data in Figure 5
and it has own name “four rats’ [6]. Main result concerning structure “four rats’
Is that there is transition to chaos in aregion a £ 1/137 - Figure 10. It looks
like the fine structure constant a =e®/hc =1/137.0359990 could be

calculated from model (5) as a transition point between regular and chaotic

behaviour of nucleonsin anuclel.
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Figure 9: Bifurcation diagram “four rats’ calculated on model (10).
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Figure 10: Fragment of bifurcation diagram “four rats’ demonstrating a

chaosin “rat ears’.
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The obtained results on the chaotic behaviour of the nucleons in the bound

system indicate the complexity of describing the state of the nuclei, since the

splitting of energy levels can occur not only due to the dynamic conditions

imposed by the presence of nuclear interaction [7-8], and nucleons dynamics
[12-13], but also due to statistical reasons related to the influence of temperature

in accordance with statistics of fermions [1].
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