УДК 630*266

АГРОМЕЛИОРАТИВНАЯ РОЛЬ ПОЛЕЗАЩИТНЫХ НАСАЖДЕНИЙ ЛИПЕЦКОЙ ОБЛАСТИ

AGRO FORESTRY ROLE OF FIELD-PROTECTION PLANTATIONS OF LIPETSK REGION

Михина Елена Александровна к.с.-х.н., доцент

Mikhina Elena Aleksandrovna Cand.Agr.Sci., associate professor

UDC 630*266

Михин Вячеслав Иванович к.с.-х.н., доцент

Mikhin Vyacheslav Ivanovich Cand.Agr.Sci., associate professor

Воронежская государственная лесотехническая академия, Воронеж, Россия

Voronezh State Academy of Forestry and Technologies, Voronezh, Russia

В статье приведены параметры изменения микроклиматических и почвенных условий межполосных клеток в системе полезащитных насажлений

The article shows the parameters of changes in microclimatic and soil conditions of interbelt cells in the system of field protection plantings

Ключевые слова: ЛЕСОПОЛОСЫ, МИКРОКЛИМАТ, КОНСТРУКЦИЯ НАСАЖДЕНИЙ, ДАЛЬНОСТЬ ВЛИЯНИЯ Keywords: FOREST BELTS, MICROCLIMATE, PLANTINGS CONSTRUCTION, RANGE OF

INFLUENCE

Основной фактор, определяющий агромелиоративную эффективность полезащитных полос - их влияние на ослабление скорости ветра и уменьшение турбулентного обмена в приземном слое воздуха. С изменением ветрового потока связано снегораспределение, влажность и температура воздуха, и почвы в вегетационный период. Длительное произрастание защитных насаждений в агроландшафтах приводит к изменению микроклимата, плодородия почв и других экологических факторов [1,2,5].

Характер и степень изменения скорости ветра в зоне влияния полезащитных полос определяется составом, конструкцией, шириной полос, особенностью ветрового потока, его направлением относительно насаждений [4,6].

Исследования агромелиоративной роли защитных насаждений проведены в 5 районах Липецкой области по «Методике системных исследований лесоаграрных ландшафтов...[3]».

Полезащитные лесные полосы оказывают влияние на режим относительной и абсолютной влажности воздуха, что зависит как от их конструкции, так и от времени суток (табл. 1). Исследования влажности воздуха выполнено на тех же объектах и в одно и тоже время, что и изучение ветрового режима. Во время наблюдений была сухая жаркая погода. Лесные полосы продуваемой конструкции в дневное время суток повышают относительную влажность воздуха в зоне $5H_{\rm H}$ -O-H-30H₃ на 7,4 - 8,0 %, что важно для роста и развития сельскохозяйственных культур.

Таблица 1 – Влияние полезащитных лесных полос на относительную (%) и абсолютную (мм) влажность воздуха

			В зоне		Разница с
Конструкция	Время суток	В лесной	влияния	Контроль,	контролем,
лесных полос		полосе	полос 5Н _н -	35-40 H ₃	%/MM
			0-30H ₃		
	1-ая	56/13,5	56,5/17,1	49/13,1	+7,5/+4,0
	половина дня				
Продуваемая	Полдень	48/11,5	51,3/15,5	43,3/11,7	+8,0/+3,8
	2-ая	50,3/12,6	52,4/14,6	45/12,8	+7,4/+1,8
	половина дня				
	1-ая	55,3/10,8	58,1/12,1	52/10,8	+6,1/+1,3
Avarrance	половина дня				
Ажурно-	Полдень	53/10,4	53,1/11,1	50/10,4	+3,1/+0,7
продуваемая	2-ая	59,6/13,2	49,6/11,8	44,6/10,4	+5,0/+1,4
	половина дня				
	1-ая	61,3/16,6	55,8/15,1	54/12,6	+1,8/+2,5
	половина дня				
Ажурная	Полдень	58,0/15,7	51,1/13,8	49,3/12,6	+1,8/+1,2
	2-ая	60,3/16,3	56,6/15,3	55,3/14,2	+1,3/+1,1
	половина дня				
II.	1-ая	61,3/13,6	55,8/13,3	54,8/13,0	+1,0/+0,3
	половина дня				
Непродувае-	Полдень	58/13,8	51,1/11,1	50,1/10,8	+1,0/+0,3
мая(плотная)	2-ая	60,3/14,0	56,6/14,2	56,3/14,1	+0,3/+0,1
	половина дня				

Менее эффективны полезащитные насаждения ажурно-продуваемой конструкции, которые способствуют лишь увеличению относительной

влажности воздуха на межполосном поле на 3,1 - 6,1 % или в среднем в 1,7 раза меньше от предыдущих. Защитные насаждения ажурной конструкции по нашим исследованиям в межполосном поле (5H_н-0-30H₃) в среднем также увеличивают относительную влажность воздуха на 1,3 - 1,8 %, что также важно для роста сельскохозяйственных культур. Это обусловлено аэродинамикой воздушного потока. Максимум в снижении наблюдается на расстоянии 5 H на заветренной стороне от лесных полос.

Лесные полосы плотной конструкции в течение дня незначительно увеличивают в зоне $5H_{\rm H}$ -0-30 $H_{\rm 3}$ относительную влажность воздуха (0,3 - 1,0 %). Наибольшее изменение отмечается на заветренной стороне на расстоянии 5 - 15H от лесополос.

В исследуемых полосах в дневное время относительная влажность воздуха меньше на 0,5 - 3,3 %, чем на межполосном пространстве, за исключением насаждений ажурной и плотной конструкции.

Аналогичная закономерность получена по влиянию полезащитных лесополос различных конструкций на абсолютную влажность воздуха. Продуваемые и ажурно-продуваемые по конструкции насаждения в дневное время суток в зоне влияния увеличивают абсолютную влажность воздуха на 1,3 - 4,0 мм, или на 12,0 - 32,4 %, а плотные и ажурные - лишь на 0,1 - 2,5 мм или на 2,3 - 9,5 %. Различия в показателях контрольных участков и межполосных зон математически достоверны (t=2,68 - $3,17>t_{0,05}=2,08$ - 2,14).

Полезащитные лесные полосы также изменяют температуру приземного слоя воздуха на защищённых полях в результате уменьшения скорости ветра и ослабления вертикального его обмена. При этом, изменение температуры зависит, главным образом, от конструкции лесных полос (табл. 2).

Исследования проведены в период жаркой сухой погоды (июнь, июль) при угле подхода ветра к лесным полосам 60 - 80°.

Таблица 2 – Влияние полезащитных лесных полос на температуру приземного слоя воздуха, °C

			В зоне	Контроль	Разница с
Конструкция	Время суток	В лесной	влияния	35-40 H ₃	контроле
лесных полос		полосе	полос		м,°С/%
			$5H_{H}$ -0-30 H_{3}		
	1-ая половина дня	24,5	26,3	26,8	-0,5/1,9
Продуваемая	Полдень	26,7	27,7	28,5	-0,8/2,8
	2-ая половина дня	25,2	26,4	26,7	-0,3/1,1
Anarmana	1-ая половина дня	20,0	21,0	21,6	-0,6/2,8
Ажурно-	Полдень	21,7	22,5	22,1	+0,4/1,8
продуваемая	2-ая половина дня	21,3	23,3	23,8	-0,5/2,1
	1-ая половина дня	25,4	25,8	26,3	-0,5/1,9
Ажурная	Полдень	26,8	27,2	27,0	+0,2/0,7
	2-ая половина дня	24,0	24,2	24,2	0/0
Непродувае-	1-ая половина дня	20,6	21,7	21,8	-0,1/0,5
	Полдень	21,9	23,1	23,6	-0,5/2,1
мая(плотная)	2-ая половина дня	22,9	24,2	23,7	+0,5/2,1

Лесные полосы продуваемой конструкции в среднем на межполосном поле в первой половине дня и в полдень уменьшают температуру приземного слоя воздуха на 0,5 - 0,8°C или на 1,9 - 2,8 %, второй – 0,3°C или на 1,1 %, что очень важно для роста сельскохозяйственных культур в период жаркой сухой погоды. Полезащитные насаждения ажурнопродуваемой конструкции в первой и второй половине дня также снижают температуру воздуха на 0,5 - 0,6°C или на 2,1 - 2,8 %, а в полуденные часы идёт увеличение до 0,4°C (1,8 %). От ажурных лесных полос отмечается в зоне 5H_в-0-30H₃ в полуденное время в среднем температура воздуха выше на 0,2°C или на 0,7 %, затем существенных изменений не происходит. Лесные полосы непродуваемой (плотной) конструкции на межполосном поле в первой половине дня и полдень понижают температуру приземного слоя воздуха по сравнению с контролем на 0,1 - 0,5°C или на 0,5 - 2,1 % и способствуют повышению к вечернему времени на 0,5°C (2,1 %).

По своему влиянию полезащитные насаждения плотной конструкции близки к ажурным, ажурно-продуваемые занимают промежуточное

положение между продуваемыми и ажурными. В самих лесных полосах, как правило, температура ниже зон их воздействия на 0.2 - 2.0°C . Различия в показателях контрольных участков и приполосных зон статистически достоверны (t= 2.91 - 3.69 > $t_{0.05}$ = 2.08 - 2.14).

Изменение температурного режима приземного слоя воздуха под влиянием лесных полос способствует перераспределению температуры поверхностного слоя почвы. Одним из основных факторов, от которого зависит температурный режим почвы в агролесоландшафтах, является конструкция лесных полос и агрофон межполосного пространства.

Исследования проводились в летний период (июнь, июль) в солнечные дни на полях, занятых озимой пшеницей (слой почвы 0-10 см) при угле подхода ветрового потока $70-80^{\circ}$ к лесным полосам. Основные результаты приводятся в таблице 3.

Таблица 3 – Влияние полезащитных лесных полос на температуру почвы, °С (агрофон – озимая пшеница)

Конструкция	Время суток	Лесная	В зоне	Контроль	Разница с
лесных полос		полоса	влияния	$35-40 \text{ H}_3$	контролем,
			полос		°C/%
			$5H_{H}$ -0-30 H_{3}		
	1-ая половина дня	20,6	32,9	35,7	-2,8/1,8
Продуваемая	Полдень	22,3	35,8	37,6	-1,8/4,8
p •// - w • · · · · · · · · · · · · · · · · · ·	2-ая половина дня	23,3	34,6	37,1	-2,5/6,7
Avvvv	1-ая половина дня	19,8	32,4	34,5	-2,1/6,1
Ажурно-	Полдень	20,5	34,2	33,5	+0,7/2,1
продуваемая	2-ая половина дня	22,4	35,3	36,3	-1,0/2,8
	1-ая половина дня	21,3	30,6	31,6	-1,0/3,2
Ажурная	Полдень	22,2	32,5	30,8	+1,7/5,5
	2-ая половина дня	21,1	27,4	25,4	+2,0/7,9
Непродувае-	1-ая половина дня	23,2	32,1	30,8	+1,3/4,2
	Полдень	26,4	36,6	33,3	+3,3/9,9
мая(плотная)	2-ая половина дня	26,2	33,5	30,1	+3,4/11,3

На полях, занятых озимой пшеницей, лесные полосы продуваемой и ажурно-продуваемой конструкции способствуют снижению температуры

поверхностного слоя почвы в приполосной зоне, а ажурной и плотной конструкции – повышению.

Лесные полосы продуваемой конструкции в течение дня на поверхности почвы в зоне $5H_{\rm H}$ -0-30 $H_{\rm 3}$ снижают температуру на 1,8 - 2,8°C или на 4,8 - 7,8 %. Зона эффективного влияния наблюдается до 25 H в заветренную сторону. Полосы ажурно-продуваемой конструкции в первой и во второй половине дня понижают температуру почвы см от 2,1°C до 1,0°C или на 6,1 - 2,8 %, а в полдень разница температуры составляет +0,7°C (2,1 %).

Лесополосы ажурной конструкции в первой половине дня понижают температуру почвы на 1,0°С (3,2 %), а начиная с полдня и во второй половине дня температура почвы повышается (1,7 - 2,0 °С). Различие в температуре поверхности почвы и на глубине до 10 см приполосных зон и контрольных участков , начиная с первой половины дня и заканчивая вечером за лесными полосами плотной конструкции составляют от 1,3 до 3,4°С или 4,2 - 11,3 % . За пределами 2...5 Н в заветренную сторону работу этого насаждения нельзя считать эффективной.

В зимний период лесные полосы в лесоаграрных ландшафтах перераспределяют снежный покров. Особенности перераспределения зависят от конструктивных особенностей насаждений (табл. 4)

Протяженность снежного шлейфа с наветренной стороны от лесных полос продуваемой конструкции составляет 73 м или 6,3 H, ажурной- 86 м или 7,5 H, плотной - 46 м или 4,0 H. С заветренной стороны дальность шлейфов распространяется соответственно на 223 м, 146 и 60 м или 19,4 H, 12,7 и 5,2 H. При этом, дальность общего шлейфа лесополос продуваемой конструкции больше в 1,27 раза, чем от ажурных и в 2,79 – непродуваемых (плотных). Максимальная высота снежного покрова от полезащитных насаждений продуваемой конструкции находится на заветренной стороне на расстоянии 20 м, ажурной - 10 м, непродуваемой (плотной) – на заветренной опушке. Запас снеговой воды в наветренном

шлейфе продуваемых лесных полос равен 70,9 мм или 709 м³/га, что больше в 1,2...1,3 раза, чем от других по конструкции насаждений. С заветренной стороны максимальный запас воды в снеге отмечается также в шлейфе продуваемых лесополос (75,2 мм или 752 м³/га), который больше лишь на 5,3...14,1 % по сравнению с другими защитными насаждениями.

Таблица 4 – Снегоотложение и запас снеговой воды перед таянием на межполосных полях

Конс трук ция	снех	тяженн кного йфа, м			ренный іейф	_	оенный ейф	Поле		Различия шлейфо- вых и межшлей- фовых зон, %	
лес- ных по- лос	наветренного	заветренного	общая	средняя высота снега, см	$\frac{3}{3}$ апас воды, $\frac{MM}{3}$ Га	средняя высота снега, см	запас воды $\frac{MM}{M^2}$ м 3 /га	средняя высота снега, см	запас воды, $\frac{MM}{3/\Gamma a}$	высота снега	запас воды
П	73 6,3	223 19,4	296 25,7	27,3± 0,52	70,9 709	25,3± 0,27	75,2 752	19,6± 0,75	<u>60,2</u> 602	25,4	17,5
Аж	86 7,5	146 12,7	232 20,2	23,4± 0,46	58,6 586	24,5± 0,24	71,2 712	19,4± 0,83	<u>58,2</u> 582	18,8	10,6
Н	46 4,0	<u>60</u> 5,2	106 9,2	21,8± 0,38	<u>54,8</u> 548	22,7± 0,41	65,9 659	18,1± 0,74	<u>53,9</u> 539	17,9	10,3

Примечание: П- продуваемая конструкция; Аж – ажурная; H – непродуваемая (плотная)

Различия в средней высоте снежного покрова в наветренных шлейфах от лесополос различных конструкций существенны ($t=2,71-8,59>t_{0,05}=2,14-2,18$). Аналогичные достоверные различия отмечаются и в заветренных шлейфах ($t=2,28-5,31>t_{0,05}=2,14-2,18$).

Вне зоны влияния полезащитных насаждений средняя высота снежного покрова составляет 18,1 - 19,6 см с запасами снеговой воды 53,9 - 60,2 мм или 539 - 602 м³/га. Различия высоты снежного покрова шлейфовых и

межшлейфовых зон среди лесополос продуваемой конструкции составили 25,4 %, ажурных насаждений - 18,8 и плотных — 17,9 %; в запасе снеговой воды соответственно 17,5 %, 10,6 и 10,3 %. В самих лесополосах плотной конструкции средняя глубина снежного покрова больше на 12,8 - 19,9 %, чем в защитных насаждениях других конструкций. Коэффициент варьирования мощности снежного покрова по снегомерным маршрутам составил 11,7...14,9 %.

Таким образом, в условиях Липецкой области лучшими по снегораспределению и накоплению влаги в зимний период являются полезащитные полосы продуваемой конструкции. Насаждения плотной конструкции собирают снег внутри себя и их дальность влияния меньше в 2,8 раза, что свидетельствует о более низкой их эффективности. Ажурные по конструкции лесные полосы занимают промежуточное положение.

В вегетационной период лесные полосы оказывают и биотическое влияние на ландшафт. Согласно приведенных данных в таблице 5 наименьшая микробиологическая активность целлюлозоразрушающих микроорганизмов в прилегающих зонах отмечена в 2006 г. от влияния всех видов конструкции лесополос и расстояния от них.

Вместе прослеживается тем. закономерность уменьшения микробиологической активности от влияния лесополос ажурной и непродуваемой (плотной) конструкции в сравнении с защитными продуваемой конструкции. Так, при насаждениями оптимальном 30 Η расстоянии ДО OT лесополос продуваемой конструкции микробиологическая активность в среднем составила 36,0 %, ажурных насаждений – 32,0% и непродуваемых (плотных) – 30,6%. Максимальный показатель отмечается на расстоянии 5H от защитных насаждений (38,3; 34,0 и 31,4%). Разница по микробиологической активности контрольных участков (40Нк) и приполосных зон составляет в относительных показателях от 5,0 до 10, 9%.

Таблица 5 – Влияние конструкции лесополос и расстояния (H) на биологическую активность почв, %

Конс трук-	Расстоя- Го				Среднее за 3 года	Разница по отноше-	
ция лесо- полос	лесополос	2005	2006	2007	2005-2007	нию к контролю	
	5 H	38,7	34,9	41,4	38,3	5,3	
П	30 H	34,5	31,7	38,8	34,9	1,9	
	40 H(κ)	31,2	30,4	37,4	33,0	-	
	5 H	35,4	29,8	36,8	34,0	3,3	
Аж	30 H	31,8	28,4	35,4	31,9	1,2	
	40 H(ĸ)	30,2	27,3	34,5	30,7	-	
	5 H	31,6	28,6	34,0	31,4	2,3	
Н	30 H	29,5	26,4	33,5	29,8	1,9	
	40 H(κ)	28,9	25,6	32,8	29,8	-	

Таким образом, микробиологическая активность целлюлозоразрушающих микроорганизмов во многом определилась особенностью конструкций лесных полос и расстоянием от них.

Тяжелые металлы, поступающие в почву в результате антропогенного воздействия, могут оказывать влияние на активность ферментов. Кроме того, на межполосных полях отмечаются различия в микроклимате. В этой связи нами проводилось определение фермента каталазы в зависимости от конструкции лесных полос и расстояния от них.

Определение показателей каталазы в почве проводилось в период кошения озимой пшеницы (табл. 6).

Таблица 6 – Активность каталазы в зависимости от конструкции лесных полос, O_2 , $cm^3/r/мин$

Конструк - ция лесных полос			Годы		Сред-	Откло- нение
	Зона	2005	2006	2007	нее за 3 года	от контро- ля
П	0 - 30 H	5,7	5,5	5,9	5,7	0,7
Аж	0 - 30 H	5,4	5,2	5,8	5,5	0,5
Н (конт- роль)	0 - 30 H	5,1	4,7	5,3	5,0	-

Согласно приведенным данным наименьшая активность каталазы в почве отмечена в зоне влияния лесных полос плотной конструкции, которая в среднем за 3 года составила $5.0~\rm O_2~\rm cm^3/\rm r/muh$. Максимальное содержание каталазы наблюдается в приполосной зоне влияния лесополосы продуваемой конструкции ($5.7~\rm O_2~\rm cm^3/\rm r/muh$), где разница в сравнении с контролем (H —непродуваемой -плотной конструкции) составила $0.7~\rm O_2~\rm cm^3~\rm r/muh$ (12.3%). Лесные полосы ажурной конструкции способствуют повышению содержания каталазы на 10.0%, что меньше на $0.2~\rm O_2~\rm cm^3~\rm r/muh$, чем в зоне влияния защитных насаждений продуваемой конструкции.

Таким образом, максимальное содержание фермента каталазы при прочих равных условиях, отмечено в почве зоны 0 - 30H от влияния лесных полос продуваемой конструкции.

Оптимальное количество нитратов содержащихся в почве позволяет получить высокую продуктивность агроценозов. Наши исследования по влиянию лесных полос различных конструкций на накопление нитратов в почве проводились в период восковой спелости озимой пшеницы и приведены в таблице 7.

Таблица 7 – Влияние различных конструкций лесных полос на нитрификационную активность почв, мг/кг (0 - 30 H)

Конструк-	Глубина взятия		Годы	Годы		Откло нение
ция лес- ных полос	образца почвы, см	2005 2006	2007	за 3 года	от конт- роля	
П	0-20	62,5	53,6	72,4	63,7	18,4
11	21-50	66,0	53,0	73,2	64,0	18,8
Аж	0-20	49,9	44,4	54,6	49,6	4,3
7 DX	21-50	48,7	45,0	55,3	50,0	4,7
H (конт- роль)	0-20	45,0	40,1	50,6	45,3	-
роль)	21-50	44,8	39,9	51,0	45,2	-

Полученные данные свидетельствуют о том, что наибольшее количество нитратов образуется в верхнем слое почвы (0-20 см) и они имеют широкие вариации. Так, их колебание в зоне 0 -30 Н в среднем за три года составило от 45,3 мг/кг (непродуваемая-плотная конструкция) до 63,7 мг/кг (продуваемая конструкция), где с глубиной 21 - 50 см количество нитратов практически не изменилось в сравнении с их накоплением в слое 0 - 20 см.

Кроме того отмечается, что наибольшее количество нитратов образовалось в слое почв 0 - 20 см и 21-50 см в зоне 0 - 30 Н от лесополос продуваемой конструкции (63,7 — 64,0 мг/кг). Прибавка в сравнении с контролем (непродуваемая-плотная конструкция) составила 18,4 мг/кг (0 - 20 см) и 18,8 мг/кг (21 - 50 см), что намного больше (на 14,1 мг/кг) в сравнении с накоплением в микрозоне ажурной конструкции, где нитрифицирующая способность почвы составила 49,6 мг/кг (0-20 см) и 50,0 мг/кг (21-50 см). Наименьшая нитрификационная активность почв отмечена в условиях вегетационного периода 2006 г., где от влияния всех

конструкции лесополос нитрифицирующая активность в верхнем 0-20 см слое почвы была равна – 40,1 - 53,6 мг/кг.

Таким образом, отмечена аналогичная закономерность в накоплении нитратов и целлюлозоразрушающей способности микроорганизмов.

Наиболее типичным представителем дождевых червей в почвах Центрального Черноземья является пашенный червь, количество и активность которого в значительной степени зависит от состояния окружающей среды.

Проведенные нами исследования констатируют, что на плотность популяции дождевых червей в агроценозе озимой пшеницы в летний период существенное влияние оказывали прилегающие территории с особым микроклиматическим режимом (табл.8).

Таблица 8 – Влияние лесных полос на количество и биомассу дождевых червей в агроценозах озимой пшеницы

Конструкция лесных полос	Зона	Численность и би (слой почвы 0 - 50			
1103100		3 к 3 /м 2 Γ /м 2			
П	0 - 30 H	57	56,8		
Аж	0 - 30 H	48	45,2		
Н (контроль)	0 - 30 H	29	30,1		

Приведенные в таблице данные свидетельствуют о том, что наименьшее количество дождевых червей в почве обнаружено в зоне 0- 30 Н от влияния непродуваемых (плотных) лесополос (29 шт/м²). В приполосных зонах защитных насаждений ажурной конструкции количество дождевых червей увеличивается до 48 шт/м². Максимальное количество дождевых червей обнаружено в зоне влияния лесных полос продуваемой конструкции и составило 57 шт/м².

В зависимости от количества дождевых червей находилась и их биомасса, которая распределилась следующим образом: 30,1 г/м² (непродуваемая-плотная конструкция), 45,2 – (ажурная) и 56,8 г/м² (продуваемая конструкция).

Результаты проведенных исследований свидетельствуют о том, что количество и биомасса дождевых червей при прочих равных условиях во многом зависит от влияния лесных полос различных конструкций.

На основании вышеизложенного, представляется возможным сделать следующие выводы:

- 1.Полезащитные насаждения в условиях Липецкой области выполняют значительную роль в изменении микроклимата на прилегающих территориях. Характер и степень таких изменений зависит от структурных особенностей самих защитных насаждений.
- 2.Для условий лесостепи уточнены и получены зональные показатели абиотического влияния полезащитных насаждений и вместе с тем впервые освещены вопросы биотической роли лесополос, что является научной и практической новизной в аспектах лесомелиорации ландшафтов и формирования оптимизированных лесомелиоративных комплексов.
- 3. Лучшими по влиянию на ветровой режим, влажность и температуру воздуха, температуру поверхностного слоя почвы (0 10 см), распределению снежного покрова на межполосных полях, целлюлозоразрушающую способность, ферментативную, нитрифицирующую активность, количество и биомассу дождевых червей в почве являются полезащитные полосы продуваемой, затем ажурно-продуваемой и ажурной конструкции, где их дальность и показатели влияния выше на 5,4 49,1% по сравнению с насаждениями плотной конструкции.
- 4.Для создания лесомелиоративных систем полезащитного назначения необходимо формировать насаждения оптимальных структурных параметров, обладающих наибольшими лесомелиоративными свойствами.

Список литературы

- 1.Захаров В.В., Кретинин В.Н. Агролесомелиоративное земледелие. Волгоград: ВНИАЛМИ, 2005. 217 с.
 - 2. Ивонин В.М. Агролесомелиорация водосборов. Новочеркасск, 1993. 200 с.
- 3. Методика системных исследований лесоаграрных ландшафтов. М.: ВАСХНИЛ, 1985. 112 с.
- 4.Михина Е.А., Михин В.И. Агроэкологические условия формирования лесоаграрных ландшафтов // Оптимизация ландшафтов зональных и нарушенных земель. Воронеж: ВГУ, 2005. С. 38-39.
- 5.Михин В.И., Михина Е.А. Лесомелиорация ландшафтов Среднерусской возвышенности // Социально-экономические проблемы лесного комплекса. Екатеринбург: УГЛТУ, 2005. С. 314-316.
- 6.Павловский Е.С. Экологические и социальные проблемы агролесомелиорации. М.: Агропромиздат, 1988. 181 с.