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1. Introduction

Lately an interest for the problems of estimation of atmosphere air quality in
the cities has increased. Firstly it should be connected with the policy of envi-
ronment protection which is carried out by developed countries. In 1992, 11 UN
Conference on Environment protection and development adopted the Declara-
tion which enunciated principles of stable development. In particular a strategy
has been worked out on limitation and reduction of carbon dioxide emission
which can effected catastrophically on the world climate. In 1993 in Russia a na-
tional plan on environment protection and stable development was worked out.
The main principles of this plan became the basic in the policy of management
in the regions [2]. In these declarations and plans atmospheric air is considered a
resource, qualitative consumption of which should be guaranteed not just for the
present generation of human beings but for future generations as well.

The problem of air pollution is tightly connected with the development of
industry, transport and energetic. Continuous process of coal, natural gas and
organic fuel burning aimed at obtaining electrical energy and heat, wide spread
of automobile transport, waste of chemical plants and metallurgical works — all
this leads to accumulation of different chemical compounds in the atmosphere,
which affect the atmosphere composition in a planetary scale. Waste of nitric
oxide, sulphur oxide and carbon oxide badly affect different components of bio-
sphere. Health of the urban population in big industrial cities is aggravating be-
cause of air pollution. It has been found that air pollution results in building and
monuments destruction. Among natural factors of air pollution there are vol-
canic activity and wind erosion, the latter is partially connected with agricultural
development: extension of land under crops and soil destruction because of in-
tensive exploitation.

Practically all industrial countries exercise environment control, in the
sense, that waste of harmful substances should be limited, including the atmos-
phere. For the effective management a special control of air quality is needed,
which includes a certain waste volume limitation, taking into consideration the
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current composition of atmosphere. In its turn air composition is determined by
continuous and periodical measurements in the local points, as well as at mobile
stations i.e. by monitoring. Even a well-organised network of the observation
stations cannot secure true information of the air quality in the whole physical
volume in a given region. It is necessary to have a suitable model in order to ap-
ply data of observations to the areas where monitoring stations are not available.
Thus, the problem arises of mathematical modelling of the quality of free air,
tightly connected with a solution of a problem of diffusion of admixtures in the
atmosphere under a given emission [3].

Thanks to acknowledging by the community and government, the impor-
tance of solution of the problem of ensuring permanent monitoring of air pollu-
tion, such powerful research trends as EUROTRAC-program which includes
over 250 research groups in 24 European countries [4] — have been supported. It
should be noted that the main aim of EUROTRAC - is co-ordination of pro-
grams of scientific researches of transboundary transport and chemical trans-
formation of admixtures in the troposphere over Europe.

Mathematical modelling of the air quality is getting more and more effective
instrument in the analysis of atmosphere condition, due to the rapid development
of electronic computers and decrease in their cost, and also perfection of
mathematical models of transport of gaseous fluid- and solid dispersed compo-
nents of pollution. Systems of free air quality modelling have been created in big
cities such as Paris [5], Lisbon [6], Budapest [7], on a planetary scale [8], and
over huge regions as Western Europe or northern latitudes of Eurasia [9-10], as
well as in small towns such as Oxford or Cambridge [11] and even in the central
street of London [12].

The mane peculiarity of the above mentioned models [5-12] and others is
that modelling of admixtures transport is carried out on the base of systems of
diffusion equations with coefficients depended on parameters of atmospheric
turbulence. It should be noted that modelling of air flows in the boundary layer
of atmosphere is a complicated problem, solution of which depends on the theo-
retical ideas about turbulence. Thus, a simplified parameterization of planetary
boundary layer [see 3, 8, 10], which allows completely eliminate calculations of
complicated atmospheric flows, using data of meteorological parameters — is a
popular method in description of global transport of admixture in the atmos-
phere.

But this approach cannot be realized in solution the problem of transport of
admixture in the lower layers of atmosphere, which is very important for the ur-
ban air quality control.

Indeed, transboundary transport of admixtures influences mainly a forma-
tion of background value of air pollution level in the regions, while to determine
the local level of pollution it is necessary, first, to take into consideration local
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centres of emission. But among all sources of pollution, automobile transport in
most regions is an outright winner in the way of intensive pollution of the at-
mosphere. For example, traffic contribution into air pollution in Sochi (Russia)
makes up over 80% [2, 13-14] that can be compared with Athens (75% from to-
tal mass of wastes NOx) and London (63% NOX) [15].

So, a problem of transport of admixtures into the areas having one or more
highways is one of the priorities. Typical space scale in such task should be sev-
eral hundreds meters from axis of the road and dozens meters in height. Thus the
process of turbulent diffusion of traffic wastes is localized in the surface layer of
atmosphere and greatly depends on parameters of turbulence as well as on the
condition of stratification. Besides heterogeneity of ground surface, including
artificial roughness in a form of buildings, trees, etc [16] is a very important fac-
tor in this problem.

Turbulent transport of moment, heat and mass in a surface layer greatly de-
pends on heat convection [17]. Due to a great scale of atmospheric flows, con-
vection in the surface layer is observed in a kind of turbulent motions of com-
plex structure [18-20]. Nevertheless a turbulent flow in a thermal stratified sur-
face layer is considered as a spatial homogeneous steady flow with well deter-
mined average parameters, which depend only on a coordinate across a bound-
ary layer. Above mentioned approach to the description of turbulent flows in a
stratified flow has been developed by Monin & Obukhov [21, 22]. Monin and
Obukhov’s similarity theory has been further developed and has got experimen-
tal confirmation by numerous researches [23-27].

Modern models of turbulent transport of admixtures in the lower part of at-
mosphere are based, mainly, on different modifications of k- e model [28-29],
which in its turn represents expansion of mean according to Reynolds equations
of Navier-Stokes for the purpose of their closing. Some closures for turbulent
stratified flow and with due regard for the planet rotation have been presented in
[30-35]. A review of the main methods of atmospheric boundary layer model-
ling is given by authors [36-38].

As it is known, the main idea in the description of mean turbulent motions
of afluid consists in representations of a vector of flow velocity as a sum of vec-
tors of average, by time, velocity of flow and velocity of pulsate motion:
u =(u) +u¢, where by definition

1 t+Dt
(u) = t(‘}J(x,t')dt' (1.2)
The averaging time interval in (1.1) is suggested quite enough to exclude the

chaotic pulsate movement of a fluid. Using the averaging procedure (1.1) in the
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Navier-Stokes model one can derive the momentum equation for turbulent in-
compressible flow as follows
1, VU, L1

L+ =—=nNU, + =L (1.2
it ﬂXj r ﬂXi r ﬂXj

where U, =(u), P=(p) is the mean pressure, t; =-r(uu;) is the Reynolds
stress tensor.

This approach was developed over 100 years ago by O. Reynolds [39], who
presented equations of turbulent flows (1.2), widely used nowadays in engineer
application as, for example, models [28-29].

It should be noted that according to Reynolds vectors (u),u¢ are not
supposed to be of any solutions of the Navier-Stokes equations. So, resultant
eguations (1.2) in common case are unclosed and thus additional physical ideas
are needed to close the model. In the simplest cases model closures for incom-
pressible flows in a boundary layer is carried out the base of the Boussinesg's
conception of eddy viscosity [40]. Thus for a turbulent flow in OX direction we
have

U
9z

th, =-r(uu,)=n-_> (1.3)

where z isthe coordinate normal to the wall

Prandtl [41-42] offered a handy formula of turbulent viscosity, using a pa-
rameter of the mixing length, by analogy with the length of molecules run, as
follows

u,

o (L.4)

— 2
n =rl

where | isthe mixing length.

The initial Prandtl’s model (1.4) is notable for its extraordinary simplicity,
because the parameter of a mixing length is estimated out of independent hy-
potheses based on the similarity theory. Prandtl’s ideas turned out to be fruitful
and constructive, so most of the models of turbulent flows in the boundary layer,
In any case, are based on the hypotheses of eddy viscosity and a mixing length.

Kolmogorov [43] suggested more general expression of eddy viscosity, con-
sidering it dependent on an average kinetic energy of turbulence, which can be
estimated on the base of hypothetical equations, in the form

t =-r <uxuz> =r nT%; n; =C,J k"? (1.5)

where C, is the constant, |, is the turbulent length scale, k =(u.u,)/2 is the tur-
bulent kinetic energy.
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Launder et al [28] suggested another form of expression (1.5) introduced the
turbulent dissipation rate e, =k*?/1,, thus with this parameter the eddy viscosity

(1.5) can be rewritten as
n, =C,k*/e; (1.6)

The various modifications of the k- e model are based mainly on the eddy
viscosity model (1.6). The standard k- e model is included the continuity equa-
tion for the mean velocity, the momentum equation (1.2), the turbulent transport
equations for 'substances' k,e,, and a generalised form of the first equation (1.5)
for Reynolds stress tensor:

) =n &Y, U0 2
] <uiuj> _nTé‘ﬂ_Xj +‘H—Xi5 3kdij (1.7)

The main problem, peculiar to the approach mentioned above, is difficulty
to control various physical effects which are the key in the process of turbulent
transport. As far as, according to Reynolds point of view, functions (u),u¢ are
not the solutions of initial equations, their physical sense is not obvious enough
to connect them with the forces functioning in the system. So, model of turbu-
lence [28-35] as well as some others are notable for numerous of different con-
stants and parameters introduced for co-ordination of estimated values with ex-
perimental data.

So, in a case of atmospheric stratified flows, following Rodi [29], k- e
model can be written as

1,

U, _ 1.8
fix 9
&+U,M+£EZHNZUi+lﬂt”+gir I
Tt X rx fo
£+Uj£+l u;T'>-i—Tg:0
Tt X Prix g

. @|u, MU, 0 2 —n_n T
'<uiuj>:nTéﬂ_><j+ﬂ_xijg_§kd”’ -<uiT>_%Ttﬂ_xi

where r, is the reference density, g is the gravitational acceleration, T,T are
the mean temperature and temperature fluctuations respectively, Pr. is the turbu-
lent Prandtl number.

The closures for model (1.8) can be derived by the common method ex-
plained by Rodi [29], as follows
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Tk Tk _ ﬂk
—+U —=— ++P +G- 1.9
qit "Hx gs ‘ﬂ)gg & (1.9)
Ter .., Ter _ rfe 0, o & e’
L aNy] SL(P +C,0)- C,, L
ﬂt JﬂX ﬂxlgs ﬂX,g Cle k( 3e ) 2e

where P,C are stress and buoyancy production of the turbulent kinetic energy,
respectively. The last terms can be expressed as

P =n

I, U0, ooy e T (1.10)
g'nx [ Pr, 11X

here b=-r “(1r /9T) is the coefficient of expansion, b=1/T for the perfect
gases.

Model (1.8-1.10) depends on the six parameters C..,C,..C,., Pr,s.,s,. TWO
of them, C,, and the turbulent Prandtl number, Pr,, are not constants for arbitrary
stratification, but its dependent on the stability parameter.

As it has been shown by Apsley & Castro [44] the k- e model requires
modification in the atmospheric boundary layer. For instance, in a case of a neu-
tral stratification, the standard k- e model (1.8) - (1.10) yields a very deep
boundary layer and large friction velocity. They supposed the new form of the
k- e model extended for the case of a stable stratification.

Thus, in general case the problem of closing the models of turbulent trans-
port has not got a comprehensive solution, because the parameters of atmos-
pheric turbulence depend on roughness of ground surface, local heat flux, pres-
sure-gradient and velocity of the planet rotation (or Coriolis forces). So, a turbu-
lent flow in the boundary layer of the atmosphere is a three-dimensional and not
stationary and can be described in particular cases only, for example, in surface
layer, in which the conditions of homogeneity and quasi stationary for the mean
turbulent fluxes of the heat and momentum are carried out (these hypotheses are
the bases of the Monin-Obukhov’ s similarity theory [21-22]).

The aim of this work is development of the theory of turbulent diffusion of
admixtures in the lower part of atmosphere, which can be applied to describe the
flows with arbitrary stratification. In the work process it became vivid that hy-
potheses about influence of buoyancy forces and roughness of ground surface on
turbulent boundary layer should have been revised. It became possible mainly
due to simplicity of description of external forces within the theory of turbulence
[45-48].
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In this paper the basic principles of the developing theory of turbulence are
given and the idea of mechanisms of influence of static and dynamic roughness
on turbulent flows parameters in the boundary layer is substantiated. The aver-
aging method of turbulent flow parameters in the boundary layer has been sug-
gested, application of which allows distinguishing among all solutions of Na-
vier-Stokes equations the functions, similar, according to the characteristics, to
those which are to be observed in experiments. Formulas are given of hydrody-
namic equations transformation to curvilinear nonstationary system of coordi-
nates, connected with chosen surface, which is modelled of the dynamic rough-
ness. The formal transformation of hydrodynamic equations in the surface layer
Is described. On the base of the equations of dynamics of viscous, heat-
conducting fluid and an equation of diffusion, by application of transformations
of the type mentioned, the system of dynamic equations for random amplitudes
of flow parameters has been obtained: admixture velocity, pressure, temperature
and concentration. For realistic modelling of atmospheric flows, the buoyancy
forces are taking into consideration, produced by thermal expansion of the air,
for the description of which Boussinesq approximation is adopted. The analysis
of similarity of the system of equations in the case of steady, non-isothermal
flow in longitudinal pressure gradient has been accomplished.

2 Theory of turbulence
2.1 Formal principles of theory

Modern models of turbulent flows are mainly based on the Navie-Stokes
eguations averaged according to Reynolds as it was mentioned in Introduction.
It is clear, that any model, based on presentation of the velocity field as a sum of
mean velocity and velocity of pulsate motion: u=(u)+u¢, in which vectors
(u),uc¢ are not the solution of initial equations, should not be closed. And this is
the main problem of turbulent flows modelling — mean equations are not ade-
guate to initial Navie-Stokes model, and therefore are not complete. Further
locking of equations obtained, is practically based on experimental data interpre-
tations, so models of turbulent flows are notable for excess adjusting parameters
which are introduced to register an effect of real forces, functioning in the sys-
tem. In spite of notable success in this sphere, Cantwell [52] passed a remark
that with the exclusion of some results obtained from reasons of dimensionality
the simplest problems for turbulent flow with the simplest out of possible
boundary conditions, cannot be solved up to now. Therefore the methods of di-
rect numerical simulation (DNS) of turbulent flows have been developed for the
last decade [53], but their application to the atmospheric boundary layer is still a
problem due to alack of resources of modern computers [54].

It should be noted that if vector (u) is somehow a solution of initial equa-
tions, then the model which has been obtained by Reynolds method, will be
closed without any other additional hypothesis. In this case the main target is a
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search for a suitable solution, T , the characteristics of which should be con-
formed to the experimentally estimated profile of the mean velocity. Algorithm
of finding such type of solutions for the flows in a turbulent boundary later was
suggested in the papers [45-48]. It consists in transformation of Navier-Stokes
initial equations so, that they would contain eddy viscosity, as in the Prandtl
theory of mixing length. Let’s consider this algorithm in detail.

Note that the field of velocity in a turbulent flow is not a regular function,
but it is not a random function as well, because it doesn’'t depend on random pa-
rameters. The main idea is to introduce the random parameters into the hydro-
dynamic equations, the flow velocity evidently depends. This is possible in a
particular case of flows in a boundary layer, for which a surface layer transfor-
mation is performed, i.e. presentation of a flow velocity vector, u=(u,v,w) , as
u=u(x,y,z/h(x,y.t),t), where z isthe normal to the wall variable, h=h(x,y,t) - is
the dynamic roughness surface adjoining to the wall but not coinciding with it.
Physical interpretation and the model of the dynamic roughness surface will be
given below.

The dynamic roughness surface in a turbulent flow is advised to characterise
by the set of the random continuous parameters h, h, h,, h, , which have a mean-

ing of the height, inclination and velocity of transport of surface elements, with
awell-known function of distribution f, = f_(h,h,,h,.h) .

We suppose that h =z/h=const and consider a representative region of
flow by avolume dv =L,Ldz, where L, L, aretypical scalesof flow inthex,

y directions accordingly — Figure 2.1. Let us consider subregion dv, , lying in
the representative region of the flow, dv, in which random parameters
h,h,h,h are changed in the intervals

(hh+dh) ,(h;h +dh), (h; h+dn) ,(h;h, +dh) accordingly. In common case
the subregion dv, is a multiply connected domain. The volume of this subregion
Is given by

dV, = dvf(h,h,h,,h)dhdhdh,dh .

The random amplitude of velocity can be determined by the toting expres-
sion u=u(x,y,z/h(x,y.t),t) inthevolume dv,:

G(h,t,h,h,h h) = lim ify(x,y,h,t)dxdydz (2.1)

dvV® dVs
where dV is an arbitrary volume enclosed in dv = L,L,dz and containing dVv,
asawhole.

Obviously, T(h,t,h,h,h h) is the random function, because it depends on
the random parameters. The equations, describing dynamics of random func-
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tions, @=7(h,t,h,h,h h), immediately follow from the hydrodynamic equa-
tions of viscous fluid and its are adduced below in subsection 2.3. Statistical
moment of an order m of the random function t(h,t,h,h,,h,h) are determined as

follows

i"(zt) = "h.t.hh, by h) T (hh, by, h)dhdh,dhydh (2.2)

Thus, in the given theory the mean velocity (and any other mean value) is
determined in two steps. On a first steps accordingly to equation (2.1) the ran-
dom functions @(h,t,h,h,h,.h) are calculated, on the second step accordingly to
the equation (2.2) the mean values "(zt) are calculated. The similar algorithm
has been proposed by Trunev & Fomin [55], and Trunev [56] for the problem of
Impingement erosion.

The transformation (2.1) can also be developed for the turbulent flows over
rough surfaces. One can assume, that the rough surface can be described by a
function z=r(x,y) and that the dynamic roughness surface presented as
h(x,y,t) =r(x,y) +h(x y,t), where h(xy,t) is the thickness of viscous sublayer.
Then, in a case of smooth surface we have at z=0: u=0, and in a case of a
rough surface at z=r: u=0. Therefore the factor of static roughness enters in

the model as a random parameter. The basic formulas of transformation of flow
parameters in the surface layer over arough surface are given by

G(h,t,r,h,h,h h) = lim ify(x,y,h,t)dxdydz (2.3)

dV® dVs

G"(zt) = (G 0.t hh, by, R f(r, b b, hy, h)drdhdn dh dh

Z=1(x.5)

Figure 2.1: Selection of coordinate system at the description of turbu-
lent flows

Let us consider two examples. If T =u,In(z/r), then the mean velocity, cal-
culated on second equation (2.3) can be written as follows
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U(2) = z/r)f (r)dr =u. In(z/r.),

where r. = exp(QJn(r) f,(r)dr) . Assuming, that T =u.In(z/r) iS some solution
of the Navier-Stokes equations one can discover, that (u) = G(2) is also the solu-
tion of these equations. If the random amplitude of velocity is G =u.(z/r)"* and

this function is the solution of Navier-Stokes equations, then the mean velocity
profile is also the solution (u)=G(2) =u.(z/r.)"at fixed value of roughness pa-

b
rameter: r =r, :((‘j'bfs(r)dr) .

The main problem on this way is how to estimate the multiple density of a
probability distribution function f_ = f (r,h,h,h ,h) ? Nevertheless, for the solu-

tions presented by the logarithmic function one can suppose that
U =it r,hh,h, h)f(r hh,h,h)drdnhdnhdndh =
=U(z,/h,r.,h, N, R

where the parameters with stars can be estimated from the experimental data or
calculated from the theory of turbulence. Practically the roughness parameter .
should be given as an input value and all another parameters can be calculated
from the similarity theory considered in sections 2.6-2.7.

2.2. Transformation of hydrodynamic equations

2.2.1. Input equations

We shall consider an air flow containing a scalar impurity. Air is assumed as
a viscous, heat-conducting, incompressible gas in a rather slow turbulent mo-
tion. It is well known fact that the surface layer comprises one-tenth of the
planetary boundary layer, in which the earth’s rotation effect can be neglected
(see Arya [18]). Thus, the model of the turbulent flow in the atmospheric sur-

face layer can be written as follows:
N.u=0 (2.4)
ﬂ—u+(u.N)u + NP _h iz +i(r -1 y)
It I [
I+ Ryt = Rer
it Pr

i

iy =R
Tt S

where r is the air density, u=(u,v,w) is the flow velocity vector, n isthe

Kinematics viscosity, p is the pressure with the exception of the hydrostatic at-
mospheric pressure, g is the gravity acceleration vector, r, is the equilibrium
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density, T is the temperature, Pr is the Prandtl number, f is the mass concen-

tration of an impurity, Sc=n/D is the Schmidt number, D is the molecular dif-
fusion coefficient. The hydrostatic equation and the standard Boussinesq ap-
proximation for the density fluctuations are given by

Np, =are(py, ), 1 -r,=-1rb(T-T), (2.5

where b =-r (fr /1T), is the coefficient of expansion, b=1/T for the perfect
gases.

The coordinates system should be determined in such a way that the z-axis

Is directed opposite to the vector of the gravity acceleration. The relief of a
ground surface is given by the equation z=r(x,y) - see Figure 2.1.

Boundary conditions for the flow parameters are set on the ground surface
and on the top of boundary layer are set as follows:

z=r(x,y): u=0, T=T, f=f (2.6)

g

z=H: u=U,100), T=T,, f=f,.

where T, is the surface temperature, f | is the impurity concentration over

the ground, H isthe boundary layer height, U, isthe wind velocity at the height
z=H, T,f , are the temperature and the impurity concentration at the height
z=H respectively.

The boundary conditions (2.6) are spatial homogeneous on horizontal coor-
dinates. This simplification is accepted only at a derivation of the main equa-

tions of turbulent flows. Hereinafter the boundary conditions will vary as re-
quired, to result them in conformity with atype of soluble problems.

2.2.2. Transfor med equations
The transformation (2.3) can be applied to equations (2.4) in the form

dvV® dVs

S(h,t,r,h,h,,h h) = lim 1 OS(x, y,h, t)dxdydz
av

where S=(@,p,T.f ),S=(u,p,T.f). The equations for random functions
S=(T,p,T.f ) can be obtained directly from system (2.4) recorded in curvilinear
non-stationary coordinates (x,y,h,t), where h = z/h(x,y,t) . The transition to cur-
vilinear non-stationary coordinates system in hydrodynamic equations is explic-

itly described by [59-60] and other. Following Pulliam& Steger [59] equations
(2.4) can be presented in the form:

111_?+%(E- EV)+ﬂ—1L(F- FV)+Jﬂlh(G- G,)+InQ+h (E- E)+h(F- F)|=B (2.7)
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where J isthe Jacobian of transformation, J=h*t 0,J'=ht 0,

aerog geroug gerovg ge r w 9
gr ou% or ou2+p% ¢ rouv% or ouW—thp?
Q:gr oV E:g rovu = F:gr ov2+p: :gr ovW—hhyp:
¢l oW+ c I oowu & A c I oWW+p -
¢ T T ¢ ur T ¢ v * ¢ wr T
éf o g u 2 g vi o g W 2

e 0 o e 0 ¢ e 0 o e 0 o

¢ - ¢ - (o3 + o +

(o o = g Ly — g :txi + g 0 +

Gt - t, ~ o t, - 0 +

=C o + F,=¢ W 5 G, = (o Y + B=¢ +

= ¢ x = ¢ Iy = au. ¢ ht; - ¢ or-ro)
pret x: anr'l'[;z anr‘lhi .: ¢ 0 :

§Df o ngyE EDhf 5 & 0 o

. . 6 . .
Heret, isthe tensor of viscous stressit , = me4 + %2 1 isthe dynamic vis-

ixc ™ g
cosity, k,1=123;h, =-Jnhh, h =-Jnhh, h, =3, W=w-h(h +hu+hyv),i=xy,z.
In the curvilinear coordinates system it is necessary to execute replacements
in terms with gradients as follows:

LI LI for j=1,2;i® iy

x,  x, 1% fh z  h¥vh

The equations (2.7) in a common case look rather cumbersome and here are
not considered. The transformation of the Navier-Stokes model to the non-
stationary curvilinear coordinate system is only the convenient method to allo-
cate some thin effect of rough surface in the viscous flow. The turbulent flow
over a smooth surface can be considered as the limiting case of flow over a
rough surface, when the influence of viscous sublayer exceeds effect of the
static roughness.

At first sight it seems that the transition to the new coordinate system
(x,y,h,t) is connected with a selection of dynamic roughness surface, and thus it
can't be defined as the univalent transformation. Nevertheless, as it will be

shown hereinafter, the requirements imposed at calculation of the mean velocity
profile allow us to define the mean parameters h.,h,,h),h/ accurate to an unde-

fined factor, which connects to the scale of the turbulent boundary layer.
2.3 Turbulent boundary layer equations

Let us consider the special type of solution of transformed equations (2.7)
which depends on time and normal variable h as it often supposed in the turbu-

lent boundary layer theory. Thus put

http://ej.kubagro.ru/2010/05/pdf/13.pdf
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1 1
LT (E-E)=-"(F-F)=0
(€ E) =g (F-F)

in the left part of (2.7). In this case eq. (2.7) can be presented in the form

h®]
i

To derive the turbulent boundary layer model one can apply the averaging
operator in the form (2.3) with an arbitrary averaging volume dVv to equation

(2.8) to conserve the commutative properties of the averaging operator with the
space and time differential operators. Then one can consider the limit of all
terms of the averaged equation a dv ® dv, . At this step the theorem about two

limits of the continuous function can be used (since the differential operators can
be considered as some Iimits). Finally we have

‘ITQ
fit

where parameters with tilde are defined similar to S=(4,p,7.C). If
S=(T,p,T,C) isthe solution of the transformed Navier-Stokes equations (2.8) in
any sense, then we have the turbulence model closures automatically as follows:

+J—(G G,)+ JhQ+h(E- E,)+h (F- F,)|=B (2.8)

Sk (G G)+J[hQ+h(E E,)+h,(F- F)] B (2.9)

lim — m(x y,h,t)u (X, y,h,t)dxdydz = G4, +qd,

dv® dVs

lim — OJ(X y,h, OT(x,y,h,t)dxdydz =0T

dv® dVs

lim — OJ(X y,h,t)f (x,y,h,t)dxdydz = Tf

dv® dvs

Here 3y/2 is the kinetic energy of turbulent fluctuations in the small vol-
ume dv,,d, isthe Kronecker delta: d, =0 for it k,d =1 fori=k

Therefore (2.8) and (2.9) are the identical equations. The dissipative termsin
(2.9) can be written as follows

& 0 0 ae 0 0 0 &
¢ - 3 20 ¢
¢ 2amy =+ gn’fﬂxVthnhl,LL— (; ni -
= __hemmg G T hg 2m Y i *
S he ha v=(1+n2hz)——9 H
hent W, - mj, hqnfnyvm m, fhe mv =
g nPr’ hj : g nPr’ hyT : gpr-lfj
& Dhf, 3 & Dhfy 3 Df 5
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where @, =Tu/1h, ....

Substituting in (2.9) the expressions of all terms finally we have the dy-
namic equations for random flow parameters as follows:

W_pIF o (2.10)
gh 9h
1o nnzhﬂ+ﬂ£+i(r~_ ‘)

th h> th h2Th r,
T nnh T

ﬂ_a+\ﬂﬂ+lﬁzizi(1+nzhz)
it hth r,hth h*th

+——=——_—(1+n"h?)

it hi Prh®9gh fh Prh? fh
ﬂ+ﬂ£:%l(l+nzhz i_ ﬂﬂf_
it hh Sch”Th fh  Sch” fh

where W=@- hF ,F =h +hd+h ¥, P=p+q,n=,/h>+hZ, N=(-hh,-hhJ).

Note, that the parameters of a dynamic roughness in equations (2.10), are
not already the functions of space variables or time. Really, in virtue of trans-
formation (10), the values of these parameters are fixed in intervals from r up
tor+dr, from hupto h+dh,from h upto h+dh ,from h upto h +dh ,
from h up to h, +dh, . These values, thus, are considered as the random pa-

rameters, and the law of their distribution in specific intervals is described by a
known function f, = f (r,h,h,,h,.h).

As we can see from the derived equations (2.10) there are the factors in the
second derivatives terms, which depend on a distance up to a rigid surface. It
should be noted also, that the equation (2.9) is not in the strong conservation
form, as, for example, it is given by Pulliam & Steger [59]. Therefore the num-
ber of terms in a sguare brackets, breaking conservation of this system are cho-
sen in the left part of equations (2.8) and (2.9). Such allocation of non-divergent
terms is stipulated by the purposes of modelling of the eddy viscosity, which, in
our opinion, arises in a boundary layer from the transformation of a tensor of
Viscous stresses near the dynamic roughness surface. It is obvious in the case of
viscous flow over arigid rough surface and is connected with an adhesion of a
viscous flow to arigid surface of any configuration. In the turbulent flow over a
smooth surface the eddy viscosity is simulated by analogy to a more widespread
type of turbulent flows, as in a special case, when r ® 0. Thus the eddy viscos-
ity is connected (mathematically) with the transformation of a tensor of viscous
stresses to coordinate mapping which brings rigid surface onto coordinate sur-
face.
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In this model the Reynolds stress can be calculated as follows
t$(zt) =¢rl@ - §)@ - G) +qdy]f,(r,h.h,,h,,h)drdhdhdh dh

Therefore the random function @ =(h,t,r,...) gives the main contribution in
the non-diagonal components of the Reynolds stress. Now we take it as granted
because we haven't any contradictions. Hence, the first assumption of this theory
Is that the turbulence interaction between the hydrodynamic fields can be de-
scribed with the solutions S=(0,p,7,C) as well as with the solutions
S=(u,p,T,C). The second assumption is that it's possible to neglect longitudinal
and transversal gradients of flow parameters in a comparison with gradients
across a boundary layer, at least for steady turbulent flow.

For the diffusion equation it is possible to derive the boundary layer model
by the simplified way. Let us suppose that in the last equation (2.4)
C =C(h(x,y,zt),t), then we have

i

& 1f N ‘ﬂzf
=+ (uN) - —sz:— . — 2
‘I]t+( ) - ﬂt+(ht+uNh)

- DRh =

In partial case when h =z/h(x,y,t) thus

Nh =h"*(-hh,,-hh,1); K% =-hh'N2h+2h(h"'Rh)?,
And therefore the last equation can be written as

T W _D ., a>Tf 2D0h it DhN*h i
h2' T h fh h 1h

This equation can be transformed to the form of the last equation (2.10). Ac-
cording to definition

f(htrhh h,.h) = I|m—6(ht)dxdydz

Q) dV

Using the identity h*N>h =N(h*Nh) + h"?(Nh)?, and averaging all terms, finally we
have

W _D
it hdh h2

2f , Dnh il
h2 ﬂ_h dV®dV av Oj Dh

— (1+n*h? ) d\l(h 'Nh)dxdy

Where DS=L,L,. But the last term is annulled if region DS=L,L, islarge
enough (the divergence theorem). Therefore we have an equation

‘HC DnzhE n i(1+n2h ‘HC nn’h C
h> qh Sch? fh ﬂh Schz‘ﬂh

—~+——~——(1 n’h? )
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which isidentical to the last equation (2.10).

The hydrodynamic part of the system (2.10) can be transformed to a form
convenient for integration. For this purpose one can multiple the second equa-
tion (2.10) by scalar way on vectors

N, N, =(h.h,0),N, =(h,,- h.,0)
Expressing the pressure gradient through other parameters one can derive

e _2r, 7 oh =y hre W (2.12)

fh h Th N2 NZ it
F WIF ﬂﬁzizi(“nzhz)ﬁ_ mrfhﬁ
Mt hth r,hth h*fh fh h* fh
ﬂ+ﬂﬂ=%1(1+ nzhz)ﬂ_ ﬂﬂ
it ht h9h th K th

where N> =1+n’h?, Y =hu- hyv.

The system (2.11) can be closed using the continuity equation, which is rep-
resented for this purpose as follows

W k=0 (2.11, a)
Th

Let us consider some similarity properties of the system (2.11-2.11,a) in
case of the steady turbulent flow. Put

TF/t=9Y /ft=TW/ft=0

in (2.11). Then the dimensionless components of a flow velocity and their
combination can be written as follows

ag/u,v =vliu,w" =w/u,,

u+

Y /nu, =u”sina - v’ cosa ,

y
j =F/nu. =u”cosa +v'sna +w,",
C=jX-W,
where u. =u, =t /r is the friction velocity, t, is the wall shear stress,
x=z/1,l =h/na =arctan(h, /h,),w; =h /nu., w, =h /n isthe second scale of ve-
locity in the turbulent boundary layer.

Substituting a gradient of pressure from the first equation (2.11) in second
one, expressing the buoyancy force through the temperature according to ap-
proximation (2.5) and using dimensionless variables finally we have:

“
dx

j (2.12)
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xl BT _

1+x 2
( ) Tox?

0

d? . dj
+( "c+X)—+
dx ? ( )dx
dy dy
1+x3)—L+( "¢ +x)—=—=0
( )dxz ( )dx

where | "'=In/u, T'=(T,-T)/T is the dimensionless temperature,
B=-gb Tn/u’, T.=qy,/(r c,u) isthe turbulent scale of temperature, g, isthe
heat flux from the ground to the air, c, is the specific heat at the constant pres-
sure of the gas.

It's obvious, that the solutions of the equations system (2.12) are not evi-
dently dependent on the choice of the scale h, and depend on the combinations
of random parameters

| =h/n,a =arctan(h, /h,),w; =h /nu..

Thus, the turbulent steady flow equations (2.12) are applicable to the arbi-
trary scales flows, including the atmospheric flows. This property is also applied
to the unsteady flows, if the dimensionless time is determined as follows
t =ut/l . For example, the equation for the contravariant component of velocity
In common case can be written as

W e IW 19
ixTe > 19X
where W* =W/u,,b, =1 g/u?.

It should be noted that the hydrodynamic part of the system (2.10), as it fol-
lows from (2.11), describes flow, which has all components of velocity. That is
the essential difference of this model from the standard models [28-29], which
are based on the Navier-Stokes equations averaged accordingly to Reynolds. Us-
ing this feature it is possible to simulate the turbulent intensity profiles in the
turbulent boundary layer as well as the mean velocity, temperature and impurity
concentration.

TW*_ x W’ Lo (T, - 1) (2.13)

1+x2
( )‘ﬂxz 1+x?% 9t 1+x

2.4 Theory of turbulent incompressible flows
2.4.1 Turbulent boundary layer in zero pressure gradient

The turbulent boundary layer over a smooth surface is the well investigated
flow [51, 61-62]. We shall consider the steady turbulent flow of incompressible
fluid in a boundary layer in zero pressure gradients. Let's assume in equations
(2.11)
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Then the normal pressure gradient can be written as follows
P _2r gF

th h 1

Using this expression, we can transform the equations (2.11) to a form con-
venient for integration:

+F =0 (2.14)

_nnh Y
h*> fh

Here the second equation is obtained by a substitution ® from the continuity
equation (1.11, a) in the second equation (1.11). The obtained equations can be

investigated in general case. Integrating these equations one time, we have

2 TY
——(1+nh )‘ﬂ_h

dF _ Aexpl-1(h)]  dY _ Acexp[-1(h)] (2.15)
dh ~ 1+n’h* ' dh [14n?h? .

d’W _ Aexpl- I (h)]
dh? ~ 1+n*h?

h » Wdh

where aresomeconstants, | =- —0———.
e A n01+n2h2

The velocity components can be written as
T=n?(F-h)h +Yh|, ¥=n?[(F-h)h - Yh] &=W+hF,

Then using (2.15), one can derive
di _n?hAe' n?*hAe’

— = +
dh ~ 1+n%h?2  f1+pn2

dv _n’hAe’' n?hAe' dw _ Ahe’

dh ~ 1+n*h? T f{+pnz ' dh  1+mh?
The further analysis of turbulent incompressible flow in a boundary layer

will be based on equations (2.16), which will be used for the computing of the
mean velocity and turbulent intensity profiles.

(2.16)
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2.4.2. Non-linear theory

The second equation in system (2.14) is non-linear. Well consider the nu-
merical method of its solution. In case of the flow over a smooth surface the
boundary conditions can be written as follows

h=0 W(0)=0, dW/dh=-h, d*W/dh?=-A, (2.17)
where A, isthe free parameter required to obtain the limited value of the in-
h o Wdh : L :
tegral 1(h) =- Q1 nen? for h® ¥ . This condition is used to obtain the loga-

rithmic asymptotic of the mean velocity profile. The parameter A has a clear

physical sense. because this parameter is directly proportional to the normal
pressure gradient on the wall:

SV S R
fh - h M fh,.  h
LE)Ry 2) IyR, b)

B
| 1 | \
%/'ﬁi{ 0.5

111) TR 1 o 1o fooo #0010 01 1 10 100 RT

Figure 2.2: @ The normalised function 1(x)/R computed for various
R =-0.830.026;0.83,3.32,26.56 - the solid lines 1-5 respectively; b) The nor-
malised integral 1,(R)/R depending on the dynamic roughness parameter
for R >0

First and second boundary conditions (2.17) can be derived from the defini-
tion of W and from the boundary conditions for the viscous flow velocity on a
rigid surface.

To minimise the number of the independent random parameters the general
solution of the second equation (2.14) can be written as W =- (h /n)c,(nh,R),

where the universal function c, depends on the composition of random pa-
rameters (the dynamic roughness Reynolds number):

http://ej.kubagro.ru/2010/05/pdf/13.pdf



http://ej.kubagro.ru/2010/05/pdf/13.pdf

Hayunsriit sxypran KyoI'AY, Ne59(05), 2010 roaa 21

__ hh
R= n(h? +h?) (2.18)

and satisfies to the equation
dic d?c

(1+X Z)dx—al"'(RtC 1+2X) dx 2

L0 (2.19)

with boundary conditions at
x=0 ¢,0)=0, dc,/dx=1 d’c,/dx’=a (2.20)

wherex =nh , a is also the free parameter required to obtain the limited
value of the integral 1(x) a x® ¥ . Note, that (2.19) can be derived from the
second equation (2.14) and that a=1*P (0)/2r u.*. Consequently the integral 1(x)
depends on the composition of random parameters R and can be calculated as

X 1A, d
1R = g R (2.21)

The integral (2.21) has been computed in the range - 25£ R £ 700 together

with problem (2.19-2.20)). Fourth-order scaled Runge-Kutta algorithms and the
shooting method (see [63]) have been used to get the numerical solution. Note
that for R =0 this problem has the analytical solution:

c,(x) = Qx(l+aarctanx)dx .

Inthis case 1(x) =0, hence one can suggest that function

B = im0 100 /R = L0

has alimited value for x® ¥ . Itispossibleif only a=-2/p, thus
X 2
c,(x) = Q- —arctanx)d
(x) =Q( 0 x)dx

This solution has been used as the initial position in the shooting method.

The normalized function 1(x)/R is shown in Figure 2.2,a for various
R =-0.830.026;0.83,3.3226.56 - solid lines 1-5 respectively. As it is shown the
function 1(x)/R is simple and smooth function such arctan(x) . The calculated
limited value I,(R) =lim,, | (x,R) isshown in Figure 2.2,b by the symbols to-
gether with the approximated line. To simplifier the numerical modelling of the
mean velocity profile over a rough surface the function 1(x,R)has been ap-
proximated as
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| (x,R) @SIO(R)arctan[(O.4+0.02R3’4)x] (2.22)

where I,(R)is given by
I,(R) /R, =138- 113arctan[04In(1+ R )],

R 1, 0£R £100
9711. (15R - 150)10°4, 100< R, £ 700

Finally note that for the negative value of the parameter R in the range
R <-25 the numerical procedure becomes unstable one. In this case the value
I,(R) =lim ., 1(x,R)increases considerably with the small decreasing of the
dynamic roughness parameter R . Since this branch of the integral 1,(R) will
not be used in the analysis, therefore data for the negative value R <0 is not
presented in Figure 2.2, b and has been neglected in approximation formula
(2.22).

2.4.3. M ean velocity profilein turbulent flow over smooth surface

The turbulent boundary layer over a smooth surface is the best example for
the theoretical consideration and modelling according to the model (2.16). In
this case the streamwise velocity gradient can be written in the standard form
using the inner layer variablesz® =zu /n, u* =0/u,, and boundary condition

for the mean velocity gradient on the smooth wall:
az”® 0du"/dz" ® 1.

Besides one can require, that at the great distance from the wall the profile
of mean velocity is described by the logarithmic function, i.e.:

azZ®¥ du/dzZ® 1l/kZ,

where k isthe Karman constant (we use the parameters with stars instead of
the random parameters according to subsection 2.1, thus it's the reason why the
Karman constant has been taken). Finally we have got for the streamwise veloc-
ity gradient

du” Ae' gl
+ = + +\2 +
dz' 1+(Z /1) Kl 1+ (21 )

(2.23)

where A=1-e"°/kl *,1 “=hu, /nn.

The first term in the right part (2.23) has the essential value mainly close to
the wall (if A1 0) and the second one gives the main contribution in the loga-
rithmic layer. To derive the mean velocity profile we should firstly define the
parameter A=1- e" /kl *. Note, from first equation (2.16) and (2.23) it follows
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that
au’(©) +cosa sna av (0
dz* dz*

Our suggestion about the dynamical roughness structure is that the parame-
ter a fluctuates around the mean value a =p /2. This structure looks like fur-
rows elongated along of the mean flow stream lines in the viscous sublayer (see,
for instance, Cantwell, Coles & Dimotakis [64]) where the visualisation of the
coherent structure in the turbulent boundary layer is presented, and subsection
2.5 here).

Thus for the mean flow A=1-e"/kl *=0, then the length scae
| * =huy, /nn can be found as the solution of the next equation

k =w expll,(R)]/ R (2.24)
where R =1"w,/u,, w,=h /n isthe second scale of the turbulent velocity.
For an arbitrary value w, the equation (2.24) has two roots or hasn't any roots
and only if dk /dR =0 this equation has one root. Hence for the uniqueness of
the mean velocity profile should be done
1 dk _eed, e° _
w; dR R dR R*
The numerical solution of the equation (2.25) with 1,(R) determined from
(1.22) gives R =R » 122 and therefore the predicted values of the turbulent the-
ory constants are given by (for k =0.41)

w =kR exp(-1,) =014, | ;=R /w’ =871 (2.26)

A =cos’a

0 (2.25)

The fundamental parameter of length for the turbulent boundary layer is de-
fined from here: | =1 {n/u »87In/u, that almost coincides with the peak of

turbulence production, obtained by Klebanoff [49] and Laufer [50]. The funda-
mental scale of length in the turbulent boundary layer, determined as
| ;=R /w =871 also coincides with the peak of the frequency diagram of in-
stantaneous thickness of a viscous sublayer [62] - see Fig. 2.3.

If A=0 then | *=1 ! in (2.23) and this equation can be presented in the
form:

+ lo-1
o _ e (2.27)

dz" ki1 11,5

where 1(z' /1,",R") :(‘5R‘ CE(IXFE‘ Jox.
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Figure 2.3: Frequency diagram of instantaneous thickness of a viscous
sublayer in the turbulent boundary layer [62]

Integrated the first equation (2.27) we have:

o oevldr (e -dox 1% dx |
?k|0+ 1+(z'11,7)? kg J1+x? koo,/1+x2

The standard logarithmic profile can be derived from hereat z* >>1,*:

- U S
ko J."'X2 K

(2.28)

1
+ +
u —Elnz +Cy, G

Therefore, with the given constant k another constant of the mean velocity
logarithmic profile can be calculated from the second equation (2.28). It gives
c, =5015 for k =041. The velocity profile calculated with (2.27) for

k =04%1 ;=871 isshown in Figure 2.4, a by the solid line (1). For this profile

the shooting parameter in (2.20) is estimated as a=-2/p - 0.27» 0.9066. The
predicted profile (1) has been compared with the mean velocity profile com-
puted on the model of the transitional layer proposed by Van Driest [65] - the
solid line (2). As explained by Cebeci & Bradshaw [51] the Van Driest's model
can be written in the form
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du_ (- <udwe>)"? du_
& KAl-exp(-zlly UM NG T (2.29)
Here I, isthe damping length, I, = 26n/u, . The model (2.29) is based on the

Prandtl theory of mixing length. Thus, this model depends on two parameters:
the Karman constant and the damping length.

+ a Ut )
30 U ) 30 )

20 P 20

10 1 10

0.4 1 10 0 1oo0 z+ O L 10 o 100 z+
£

Figure 2.4: @) Mean velocity profiles in the turbulent boundary layer for
inner region calculated on eq. (2.27) - (1), and with Van Driest model (2.29)
-(2); b) comparison of computed profiles (1-2) with DNS data by Kuroda et
a [66] - (3), and with experimental data by Nagano et al [68] and Smith [69]
- (5); ¢) mean velocity defect low in the outer region: solid line 1 is calcu-
lated on eq. (2.34) for V. =04 and experimental data (2,3) by Nagano et al

[68] obtained at x = 0525x;1125x accordingly; d) mean velocity defect low in
the outer region: solid line 1 is calculated on eq. (2.35) for V. =027, =038
with experimental data (2,3) by Nagano et al [68]

The profile computed on (1.29) coincides with the predicted profile 1 in the
viscous sublayer and in the logarithmic layer but differs a bit in the transitional
layer (see Figure 2.4, @). This difference can be explained by the pressure gradi-
ent effect. Figure 2.4,b demonstrates the comparison of both profiles (1,2) with
several data bases. 3 - the direct numerical simulation of the turbulent flow in
the two-dimensional channel (Re=2980) by Kuroda et al [66]; 4 - the turbulent
boundary layer in zero pressure gradient (the Reynolds number based on the
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momentum thickness Re, =1040) by Nagano et al [67,68] and 5 - the turbulent

boundary layer mean velocity profile (Re = 13052) presented by Smith [69]. Note
that both profiles (1,2) well correlated with computed and experimental data.

In the upper layer for z* 3 H* =Hu, /n the mean velocity profile should be
constant in contrast to the logarithmic profile which divergesat z*® ¥. Asit
Is well known in the outer region of the turbulent boundary layer the mean ve-
locity profile can be described by the defect low:

YooU_ 1,2 ¢ gaezi_)' (2.30)

U+: —
U k H "éHg

where the universal function F, (V) has the properties:

o,

P 21
OIV-o, \I/!@rQFH(\/)—-kInV (2.31)

lim

v® 0

Here the first condition means that the universal function does not change

boundary conditions on arigid wall. The second condition can be used to obtain
the limiting value of the mean velocity u=U,.

One can suggest that the mixed layer turbulence is generated in the same
way as the wall turbulence. Then the new dynamic roughness surface can be in-
troduced and the equation system which is similar to (2.16) can be derived. In
the case of the mixing layer we canput | =1, and | =V.H, where V. isthe pa-
rameter. Using the new characteristic scale and equation (2.30) the velocity gra-
dient can be written as

du' 1 1, e 1147
— (1+ZZ) +N(1+22)

dv ~ kV kV.

(2.32)

where z=(z- z,)/V.H =(V- \,)/V., z, =H /2 is the middle position of the mix-
ing layer.
Obviously, that the first term in the right (2.32) part corresponds to the loga-

rithmic profile in the inner layer. Therefore the combined mean velocity profile
can be written as follows

ut =ut(z')- kl(Arsh(z) +Arsh(z,)) + “1: % (arctanz + arctan z,) (2.33)

where u’(z")is the mean velocity profile in the inner layer, which is given
by equation (2.27), Arsh(z) =In(z++1+2%), z,=1/2V..

Using the asymptotic formula Arsh(z) =In(2z) for z® ¥ one can derive from
(2.33):
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L le 2 0. V1+7Z ap L0
U, =¢, - k—gnv* Re. +Arsh(zo)5+ ” %E+arctanzoa
where Re, = Hu, /n is the dynamic Reynolds number. Then, subtracting the

eguation (2.33) from both parts of this expression we have got the mean velocity
defect low in the upper layer

_In2V/V.) +Arsh(2) 1+Z0 ap o)

Ug-u’ = " " & " actanz; (2.34)

Thus, the defect low (2.34) depends on the parameter V., which can pre-
cisely be determined, for instance, in case of turbulent flow in a flat channel
from the additional condition u; (1) =0. However in the boundary layer this con-

dition seems artificial as well as concept of the external boundary. It can be un-
derstood if the mean velocity defect low (2.34) to compare with the experimen-
tal data - see Figure 2.4, c. Figure 2.4,c shows that the computed profile (solid
line 1) comes to zero when the parameter z/H 3 3, whereas the experimental
data concentrates near zero for z/ H =1. It should be noted, that the parameter of
the profile 1 is calculated by minimisation of root-mean-square deviation of ex-
perimental points from the computational curve. That is reached for \. =04.

To obtain the best correlation with the experimental data, the first condition
(2.31) has been changed and. Then the mean velocity defect low can be rewrit-
ten as

In@v/V)  Arsh(z) e 1+z0 a

Uy - U’ =- " " & " arctanza (2.35)

where e isthe parameter.

The mean velocity defect low computed on (2.35) (the solid line 1) and the
experimental data by Nagano et al (1992) are shown in Figure 2.4,d. As it has
been established V. = 0.27; e = 08. After this correction the mean velocity defect
low in the form (2.35) is in a good agreement with the experimental data - see
Figure 2.4.d.

It is necessary to take into account the contribution of the upper layer uni-
versal function gradient to the mean velocity gradient on the wall, because the
first condition (2.31) is broken. For this purpose the expression (2.33) can be
modified as follows

52

1
u =u'(z)- kl(Arsh(z) +Arsh(z,)) +%(arctanz+arctan z,)

Differentiating both parts of this expression and calculating the derivative
near the wall, we have
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du” _du 1-e

n

- =1 2.36
dz* dz' K\ Re \1+Z7 (2:30)

Therefore the contribution of the upper layer universal function gradient to
the mean velocity gradient on the smooth wall decreases with the growth of the
dynamic Reynolds number. Using (2.36) the mean velocity profile in the turbu-
lent boundary layer can be written as

52

u" =eu(z°)- % (Arsn(z) + Arsh(z,)) + “% (arctanz +arctanz,)  (2.37)

where e, =1+ (1- ) /kV. Re. \/1+ 7 »1+09/Re..

The constants of the theory of turbulence should be re-normalized due to
(2.36) asfollows

w, =ekR exp(-1,) =014e,, | ;=R /w,; =871/¢, (2.38)

It is obvious, that the uncertainty of constants in the turbulent boundary
layer on a flat plate is stipulated by the fact, that this flow is two-dimensional
one, because it develops from the laminar boundary layer through the transition
layer to the developed turbulent layer, down to the verge of separation (see
chapter 6).

2.4.4 Streamwise tur bulent intensity profiles

The variations of the velocity gradient around the mean value given by the
first equation (2.27) are the production of two terms. One of them depends on
the variations of the parameter A, which can estimated as
dA=d(1- e /kl *)=-dw;e" /kR" =-dw," /w; ; another one depends on the
fluctuating part of the wall shear stress t,, or boundary condition on the wall -
see Figure 2.5. Thus, in common case the velocity gradient can be written as

du” Ae’ (E- Ae

= +
dz* 1+(Z° /1 ) 1+ 11 )2

(2.39)

Boundary condition onthewall: z* ® 0 du*/dz* ® E where E =1 for the
mean flow.

Therefore the fluctuating streamwise velocity gradient can be written as
ddu’ _  dAe’'  dA(E/dA- De’
dz* f|_+(Z+/|0 +)2 \/1+(Z+ /1 0+)2

Let us suggest that for the considered turbulent flowdE / dA = const , then we
have:

(2.40)

(([du*)?) =((da)?)f *(z" ,dE / dA) (2.41)
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Here f (z*,dE /dA)is the solution of the value boundary problem:
df _ e , (dE/dA- De’
dz* f]_+(ZJr /1 0+)2 \/1+(Z+ /1 0+)2
wheref (0) = f(d,) =0 in case of the turbulent boundary layer on the flat

plate, and f(0)=0, f(d,) = f, for the turbulent flow in the two-dimensional chan-
nel.

(2.42)

40 -
30 -
Zz 20 -
10 -

O T T T T 1
0 1000 2000 3000 4000 5000

dU/dz

Figure. 2.5: Frequency diagram of the wall shear stressin the turbulent
boundary layer [62]. Mean velocity gradient dU /dz=2000c™

One constant of the mean-squared value of the fluctuating streamwise veloc-
ity profile can be found out from the boundary value problem (2.42) solution
and another one can be determined from the experiment. The predicted stream-

wise turbulent intensity profile, du* = /((dA)?) f (z*) and the profile by Kuroda
et al [66] computed by the direct numerical simulation of the turbulent flow in
the two-dimensional channel for Re =2980, are shown in Figure 2.6,a. The con-
stants determined for this case are given by /{(dA)?) = 0925, dE /dA= 0444. Figure

2.6,b illustrates the comparison of the computed streamwise turbulent intensity
profile (solid line) with the experimental data by Nagano et al [68] (the line
with symbols). In this case the best correlation of the computed and experimen-

tal datais for /{(dA)?) = 0.735, dE / dA = 056.

Estimating the contribution of the outer region of the turbulent boundary
layer to the streamwise turbulent intensity, one can assume, that the velocity
fluctuations in the upper layer depend on the fluctuations of the velocity gradient
on the wall. Then the generalized form of the expression (2.37) can be written as

U =en(2)- (E_k—A)%(AfSh(Z)+Arsh(zo))+ (E- Mey1+2Z (

> arctanz +arctanz,)  (2.43)
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where u’(z*) is given by the equation (2.39). Varying parameters A, E in
this profile, we have

du” =edy,(z")- %(Arsh(z)mrsh@)) +E- dAl)(eV“?é (arctarz +arctarz,) (2.44)

where du’ (z*) is calculated from (2.40). Hence, in this case it is possible to

present the streamwise turbulent intensity profile as follows du* = /((dA)?) f (2),
where

f(2)= e, f(z')- w (Arsh(z) + Arsh@o)) + (dE/dA- kl)e 1+ % (arctanz + arctanzo) (2.45)

sUT sut

., ] \
U«M"ﬁ - \ n;/(ﬁf éﬁa

0l T T T T T TR T

Figure 2.6: @) Comparison of computed streamwise turbulent intensity pro-
file with DNS data by Kuroda et al [66], b) experimental data by Nagano et al
[67, 68]

The streamwise turbulent intensity profile computed on equation (2.45) and
the experimental data by Nagano et al [68] are shown in Figure 2.7,a. Compar-
ing the computed profiles in Figures 2.6, b and 2.7,a one can conclude that the
boundary conditions on the external border for the turbulent intensity profile is
differ for this two models. The profile computed on the model (2.45) has zero
value together with the first derivative and then at z>H saves zero value,
whereas the profile (2.42) approaching to zero has the nonzero decline.

The parameters of the profile (2450 ae given by
((dA)?) =07, dE /dA = 0568, thus its practically have the same values as for the

profile shown in Figure 2.6,b. The fluctuation of the velocity profile declination
on the wall are connected with the fluctuation of the shear stress, dE =dt,, /t,, -

This value can be defined from the data shown in Figures 2.6, 2.7. For the turbu-
lent flow in the flat channel this value is given by dt,, /t,, =dA(dE / dA) = 041.
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The same value approximately we have for the turbulent boundary layer on the
flat plate.

Fig. 2.7: a) The streamwise turbulent intensity profile in the turbulent
boundary layer calculated on (2.45) - the solid line, and the experimental data
[68]; b) the mean velocity profile in the turbulent boundary layer, calculated on
(2.37) for \. =0.27,e =0.79, and the experimental data [68] obtained in the cross-

section x =0525 u

2.4.5. Normal and transver sal turbulent intensity profiles

The flow in the turbulent boundary layer is not characterised by significant
value of the normal and transversal (parallel to the wall) mean velocity compo-
nents. Therefore the turbulent fluctuation of velocity in the specified directions
can be considered as the random deviations of flow velocity vector from the
mean value. The main parameter of these deviations is direct proportional to the
dimensionless pressure normal gradient on the wall. Assuming that in the equa-
tion system (2.16) a =p /2, let us rewrite the last two equations as follows

dw*  dv"  vgxe
=X =
dx dx  1+x°

(2.46)

where v, =aw; isthe turbulent velocity scale characterised the flow velocity
pulsation in the normal and transversal directions. Suggesting that R = R, then

the turbulent velocity scale can be written through the characteristic length scale,
thus v; =aR’ /1 *. At fixed turbulent theory parameters R =R’,1 " =1 the solu-

tions of equations (2.46) depend on the parameter a, which is proportional to
the dimensionless normal to the wall gradient of pressure, a=1*P (0)/2r u.?.
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Integrating equations (2.46) the velocity components in the inner layer can
be written as follows

L S
vy = M +e o arctanx (2.47)
0 1+x

L. (e -ehl)xdx e’ )
w v, = + In(1+x

It is necessary to add the compensatory functions, which depend on the up-
per layer variable z = (z- z,) /.H , to these expressions, thus we have

+ + X\(e-l B e‘lo)dx - | 5 =
ViIvy =0 ———57 — t€& °arctanx +e (arctanz + arctanz,)

0 1+x2
L. (e -el)xdx e’ .o €. 1477
w v, = + In1+x°)+—1In
0 ? 1+x? 2 ( ) 2 1+77

where parameter e, is determined from the boundary conditions:
limg, v =vg; limg, w" =wg
Therefore we have e, =-e > and two additional equations for calculating of
the parameters of this problem:

(e - Dax stz =V el
1+X2 ZO -

(2.48)

+

0 0

(e - Dxdx
1+x?

+Alo

V.Re. _wge

+ +

\'

+%In(1+ Z5) +1In

0 0

If all parameters of the inner and outer layers are fixed, i.e,
R =R w »0.14/| * =1, then the normal and transversal velocity fluctuations de-
pend only on the parameter a=1*P (0)/2r u.’. In this case the turbulent intensity
of the transversal velocity can be written as follows:

dv' = Wdalv;, (') - Vi, (2) (2.49)

where v, is the function of the inner layer calculated according to the first
equation (2.47) at v; =1. The function of the outer layer is determined as fol-
lows

+
out —

v:, =€l (arctanz + arctanz,) .

The transversal turbulent intensity profile computed on (2.49) is shown in
the left part of Figure 2.8 together with DNS data by Kuroda et al (1989). The
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normal pressure gradient fluctuation parameter has been estimated from these
dataas da»11/w, » 787 and consequently v; =w;da » 11.

0.3 0.8

0.4 0.4

0 - - - 0 B e

0.1 1 10 ozt 01 1 in 1ozt
Figure 2.8: Turbulent intensity profiles of transversal velocity compo-

nents in the turbulent boundary layer in the two-dimensional channel com-

puted on (1.49) - (1.50) - solid lines, and DNS data by Kuroda et al [66]

The similar expression for the turbulent intensity of the normal velocity
component is given by

dw" = wyda[w;,(2°) - W, (2)] (2.50)
where the function of the inner layer can be calculated on second equation
(2.47) a v; =1. The outer layer function is determined in this case as follows

W=

out

e"[In(1+2%) - In(1+Z) + arctanz + arctan z,] .

The normal turbulent intensity profile calculated on (2.50) is shown in the
right part of Figure 2.8 with DNS data by Kuroda et al [66]. As it has been esti-
mated the turbulent normal velocity scale v, » 0.75, i.e., it is not equal to the

transversal velocity scale. This is obviously connected to the influence of dy-
namic roughness parameters, because in common case a * p/2. However it is
difficult to calculate this influence, so far as we have the non-linear problem.

2.5. Dynamic roughness surface equation

The dynamic roughness surface is connected with the coherent structures in
the turbulent boundary layer reported by Kline et al [70]. The review of the co-
herent structure problem, including the evaluation of the basic structure scales
has been submitted by Cantwell [52]. To derive the dynamic roughness surface
eguation, the common method developed by Trunev et al [71-73] can be used.
This method was proposed for the simulation of rough surfaces which are
formed on the rigid body in the impingement erosion process, including the
sputtering of arigid body by ionic bombardment.
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The Reynolds number calculated on the dynamic roughness parameters is
given by

R 4 1)
=| =)
R OWO n (h;2 + h;z)

This statistical relationship between the dynamic roughness parameters cor-
responds to the special type of the Nave-Stocks equation solution transformation
(2.4). Let's consider small variation of the second velocity scale around the
mean value w; =k R exp[- I,(R)] » 014. In this case At 0 in the first equation

(2.16) and this parameter can be written as follows
A= A cosa =w;acosa
where a =arctan(h, / h,)is the parameter characterising the dynamic rough-

ness structure. If A=0, then a =p /2. This case corresponds to the special type
of the dynamic roughness composed of furrows elongated along the streamlines
of the mean flow. If a2 p/2, then tana=h,/h »I /I . It can be considered as

the relationship between the scales of the dynamic roughness elements in the X-
and Y -directions. In this case a fluctuates around the mean value, a =p /2, and
produces the velocity and pressure fluctuation. The velocity gradient on the
wall fluctuates with a asfollows

du®/dz" =wjacosa + A,sina
For a =p/2 we have du* /dz" = A, =w /w,. Therefore in this case the ve-
locity gradient on the wall is given by

du*/dz" = (w,/w,)(W;acosa +sina) (2.51)

The pressure gradient on the wall also depends on the second velocity scale
w, as

P, (0) = (2ru’/1 "aw} (2.52)

The velocity components near the smooth wall for z® 0 can be written as
follows (see Kutateladze [62])

u @K,z v @K,z, w @K,z*,

where K. =K (x,y,t) are the viscous sublayer functions. Substituting the ve-
locity approximation formulas in the x-component of momentum equation and
supposing that p = p(h) one can derive
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&_ px(o) _ EquKl ﬂzKlgz 2
z i 2=z coa zng 0 + 0 z'0(1)
where o(3) is the restricted value for z=0. Using equations (2.51)-(2.52) fi-

nally we have the dynamic roughness surface equation in case of the steady tur-
bulent boundary layer over a smooth surface

_ #@’K | T°K 0
cosa —ngﬂxz + v (2.53)

1K 2u’wja
t n( )

where K = (w,/w,)(w;acosa +sina).

The steady turbulent flow dynamic roughnessisrealised for w,=w,. Inthis
case equation (2.53) can be transformed into the quasi-linear differential equa-
tion

nKa§E+EQ+n K, a2 +aj): -

™ Wy nl *°

where K, =-wjasina +cosa, K_, =-wacosa - sina .

205+
zu*woacosa vk B (2.54)
a ﬂt

The point in which K, =0 isthe singular point of the equation (2.54). In this
point tana. =-(w;a)'. As it has been estimated in the numerical experiments
wya» - 0.127 for the mean flow, therefore a. »p /2- w|a. For the stationary case,
l.e. for a » p /2, the equation (2.54) can be written in the quasi-elliptical form

25 25 &
O gt qpes @Ak, (2.55)
+3

wered =(a-p/2)/|jwid, k¥ =2u?/n?

Using the function a =a'(x, y) one can calculate the dynamic roughness sur-
face parameters as follows

h + Wga|éfhy =0, h=wy/hi+hZ»wgh, (2.56)

In the special case when a <<1, equation (2.55) has the periodical solution

a =a ,cos(k,y)

where a , is the amplitude, k, =+2(1 *)®*u./n is the wave number in the y-

direction. Therefore the transversal length scale of coherent structures can be es-
timated as

| \=2p/k,=+2pl ;*"n/u »1l4n/u
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The predicted length scale is in a good agreement with the experimental
value, | »10n/u., obtained by Kline et al. [70]. This type of coherent struc-

tures corresponds to the furrows considered above.

In the special case when [1- a|<<1, the periodical solution of the equation
(2.55) is given by

a =1+a ,cos(k,y)

where k, =v2(I *)**u /an . Therefore in this case | , depends on the am-
plitude a,. The periodical solution of the first equation (2.56) can be written as

h(x, y,1) = h(k,x- Ky, - b (k,%)), (2.57)
¥
b(s)=g a o OF0s" sds
n=1

k, =

Wga‘ky, Y, =y +Wwit.

The transversal phase velocity of the dynamic roughness surface distur-
bances can be determined as c, =w,. The dynamic roughness length scale | |

depends on the amplitude a, asfollows

I =1 a,/

wyal » 898a /u..

For a,»1 the estimated streamwise length scale of coherent structures
agrees with the experimental value | »1000n/u, obtained by Blackwelder &
Eckelmann [74], and discussed by Cantwell [52].

In this paper the problems of non-linear theory of turbulent boundary layer
have been studied. The algorithm of numerical solution of the problem has been
considered. Equation is deduced, connecting constants of non-linear theory.

A fundamental parameter of the turbulent boundary layer length has been
determined, which coincides with the position of velocity peak of turbulence en-
ergy generation according to Klebanoff [49] and Laufer’s [50] data. It is shown
that the profile of an average velocity in the boundary layer can be described sat-
isfactory, using only one constant. The Karman constant can be used for this
purpose. The second constant of the logarithmic profile can be estimated within
this theory. Velocity profile, calculated according to the model suggested, con-
forms well to the data of direct numerical modelling, to experimental data and
models of other authors. Results of velocity intensity pulsation modelling have
been presented, as well as their compliance with the results of direct numerical
modelling and experimental data. A model of dynamic roughness in turbulent
boundary layer has been suggested. It has also been shown that in a stationary
case there are two types of periodic solutions. One solution corresponds to dy-
namic roughness in a kind of furrows, stretched along the main flow. The vis-

http://ej.kubagro.ru/2010/05/pdf/13.pdf



http://ej.kubagro.ru/2010/05/pdf/13.pdf

Hayunsriit sxypran KyoI'AY, Ne59(05), 2010 roaa 37

cous flow over the structures is a physical mechanism of formation of logarith-
mic profile of velocity. The second solution corresponds to the perturbations of
limited amplitude which have a limited length in the direction of the mean flow.
It is shown that the parameters of dynamic roughness, having been calculated on
the base of this model, coincide with the data of experiments.

(To be continued)
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