УДК 004.8

06.02.00 Ветеринария и Зоотехния

МАТЕМАТИЧЕСКОЕ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ВЗАИМОСВЯЗИ МОРФОЛОГИЧЕСКОГО, БИОХИМИЧЕСКОГО И МИКРОЭЛЕМЕНТНОГО СОСТАВА КРОВИ БЫЧКОВ ГЕРЕФОРДСКОЙ ПОРОДЫ И ИХ РАЗМЕРОВ

Луценко Евгений Вениаминович д.э.н., к.т.н., профессор Scopus Author ID: 57188763047 РИНЦ SPIN-код: 9523-7101

prof.lutsenko@gmail.com http://lc.kubagro.ru Кубанский государственный аграрный университет имени И.Т.Трубилина, Краснодар, Россия

Лежнев Виктор Григорьевич д.ф.-.м.н., профессор РИНЦ AuthorID: 1711

Кубанский государственный университет, Краснодар, Россия

Ковелин Николай Иванович к.э.н., доцент kovelin1950@gmail.com

Кубанский государственный аграрный университет имени И.Т.Трубилина, Краснодар, Россия

Исследователями получены данные по морфологическому, биохимическому и микроэлементному составу крови бычков герефордской породы различных размеров. В этой связи у ученых и хозяйственников возникает три естественных вопроса: 1) возможно ли по этим показателям крови прогнозировать размеры и тем самым мясную продуктивность бычков; каковы сила и направление влияния тех или иных значений показателей крови на размер и вес бычков; какие показатели крови сходны по смыслу, а какие отличаются и на сколько (в какой степени). Аргументированным ответам на эти вопросы путем применения современных методов математического и численного моделирования для решения соответствующих задач и посвящена данная статья. Результаты исследования могут быть использованы всеми желающими, благодаря тому, что Универсальная автоматизированная система «Эйдос», являющаяся инструментарием Автоматизированного системно-когнитивного анализа, находится в полном открытом бесплатном доступе на сайте автора по адресу:

<u>http://lc.kubagro.ru/aidos/_Aidos-X.htm</u>, а численный пример решения поставленных задач размещен как облачное Эйдос-приложение №133

Ключевые слова: МАТЕМАТИЧЕСКИЙ МЕТОД, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ,

UDC 004.8

Veterinary and Zootechnics

MATHEMATICAL AND NUMERICAL MODELING OF THE RELATIONSHIP BETWEEN MORPHOLOGICAL, BIOCHEMICAL AND TRACE ELEMENT COMPOSITION OF BLOOD OF HEREFORD BREED CALVES AND THEIR SIZE

Lutsenko Evgeniy Veniaminovich Dr.Sci.Econ., Cand.Tech.Sci., professor Scopus Author ID: 57188763047 RSCI SPIN-code: 9523-7101

prof.lutsenko@gmail.com http://lc.kubagro.ru
Kuban State Agrarian University, Krasnodar, Russia

Lezhnev Viktor Grigorievich Dr.Sci.Phys.-Math., professor RSCI AuthorID: 1711 Kuban state University, Krasnodar, Russia

Kovelin Nikolai Ivanovich Cand.Econ.Sci., associate professor kovelin1950@gmail.com Kuban State Agrarian University, Krasnodar, Russia

The researchers obtained data on the morphological, biochemical and trace element composition of the blood of bull-calves of Hereford breed of different sizes. In this regard, scientists and business executives have three natural questions: 1) whether it is possible to predict the size and thus the meat productivity of bulls using these blood indicators; what are the strength and direction of the influence of certain values of blood indicators on the size and weight of bulls; what blood indicators are similar in meaning, and what are different and how much (to what extent). The article is devoted to the reasoned answers to these questions by applying modern methods of mathematical and numerical modeling to solve the corresponding problems. The results of the study can be used by anyone, due to the fact that Eidos the universal automated system, which is a tool of ask-analysis, is in full open free access on the author's website at:

http://lc.kubagro.ru/aidos/ Aidos-X.htm, and numerical examples of solving the mentioned problems with the use of artificial intelligence technologies are placed as a cloud Eidos-application #133

Keywords: MATHEMATICAL METHOD, MATHEMATICAL MODELING,

ВЫЧИСЛИТЕЛЬНЫЙ АЛГОРИТМ, АВТОМАТИЗИРОВАННЫЙ СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ (АСК-АНАЛИЗ), ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ЭЙДОС COMPUTATIONAL ALGORITHM, AUTOMATED SYSTEM-COGNITIVE ANALYSIS (ASC-ANALYSIS), EIDOS THE INTELLECTUAL SYSTEM

Doi: 10.21515/1990-4665-143-033

СОДЕРЖАНИЕ

ВВЕДЕНИЕ (ПОСТАНОВКА ЗАДАЧ И РЕШАЕМАЯ ПРОБЛЕМА)	2
1. КРАТКО ОБ АСК-АНАЛИЗЕ И СИСТЕМЕ «ЭЙДОС»	4
1.2. СУТЬ МЕТОДА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ АСК-АНАЛИЗА И ЧАСТНЫЕ КРИТЕРИИ	10 12
2. СИНТЕЗ И ВЕРИФИКАЦИЯ СИСТЕМНО-КОГНИТИВНОЙ МОДЕЛИ ПРЕДМЕТНОЙ ОБЛАСТИ	14
2.1. КОГНИТИВНАЯ СТРУКТУРИЗАЦИЯ ПРЕДМЕТНОЙ ОБЛАСТИ И ПОДГОТОВКА EXCEL-ФАЙЛА ИСХОДНЫХ ДАННЫХ	14 16 20
3. РЕШЕНИЕ ПОСТАВЛЕННЫХ ЗАДАЧ ПУТЕМ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ	25
3.1. ЗАДАЧА-1: ИДЕНТИФИКАЦИЯ, ДИАГНОСТИКА, КЛАССИФИКАЦИЯ И ПРОГНОЗИРОВАНИЕ	Γ- 28
3.3.1. Когнитивные диаграммы классов	30 31 31 32
4. НЕКОТОРЫЕ ВЫВОДЫ, РЕКОМЕНДАЦИИ И ПЕРСПЕКТИВЫ	34
THATEDATVDA	26

Введение (постановка задач и решаемая проблема)

В работе [1] приводятся две сравнительных таблицы, первая из которых содержит данные по морфологическому и биохимическому составу крови бычков герефордской породы различных размеров (таблица 1), а вторая — по содержанию в их крови микроэлементов (таблица 2).

Таблица 1 — Морфологические и биохимические показатели крови v подопытных бычков $(X\pm Sx)^*$

Показатель		Группа	
	I группа (ком-	II группа	III группа
Показатель	пактные)	(средние)	(крупные)
Эритроциты, 10^{12} л	7,60±0,18	$7,69\pm0,21$	7,93±0,16
Лейкоциты, 10 ⁹ л	6,62±0,23	6,59±0,17	6,63±0,22
Гемоглобин, г/л	127,01±1,04	128,53±0,93	135,14±0,87

Общий белок, г/л	76,58±0,15	77,92±0,24	79,47±0,11
Альбулины, г/л	37,09±0,36	37,84±0,25	38,61±0,31
Глобулины, г/л	38,37±0,43	39,30±0,42	40,11±0,27
а	12,28±0,61	12,65±0,55	12,98±0,48
р	11,70±0,72	11,98±0,68	12,15±0,53
у	14,39±0,73	14,67±0,59	14,98±0,64
Азот, ммоль: общий	2006,58±4,28	2019,81±4,82	2139,17±3,75
остаточный	26,53±0,39	26,98±0,51	27,32±0,44
аминный	6,87±0,24	6,93±0,37	7,21±0,16
АСТ, моль ч/л	1,76±0,08	1,89±0,06	2,11±0,09
АЛТ, ммоль ч/л	$0,65\pm0,04$	$0,73\pm0,03$	$0,75\pm00,2$
Кислотная емкость, ммоль/л	109,77±5,09	109,89±4,32	111,08±3,81
Са, ммоль/л	2,36±0,11	2,38±0,14	2,43±0,13
Р, ммоль/л	1,84±0,15	1,88±0,12	1,91±0,09
Витамин А, ммоль/л	2,13±0,09	2,16±0,08	2,18±0,11

*Источник [1]

Таблица 1 – Содержание микроэлементов в крови подопытных животных, мкг %^{*}

				, , -					
Группа	Элемент								
	йод	кобальт	медь	цинк	марганец	железо			
I	8,4	8,6	296,1	487,6	4,7	35,6			
II	9,2	9,1	304,3	505,4	5,1	36,2			
III	9,7	9,5	308,7	516,2	5,5	38,9			

*Источник [1]

В этой связи у ученых и хозяйственников возникает три естественных вопроса:

- <u>вопрос первый:</u> возможно ли по показателям крови, приведенным в таблицах 1 и 2, прогнозировать размеры и тем самым мясную продуктивность бычков;
- <u>вопрос второй:</u> каковы сила и направление влияния тех или иных значений показателей крови на размер и вес бычков;
- <u>вопрос третий:</u> какие показатели крови сходны по смыслу, а какие отличаются и на сколько (в какой степени).

Аргументированным ответам на эти вопросы путем применения современных методов математического и численного моделирования для решения соответствующих задач и посвящена данная статья.

Для выбора метода математического моделирования предметной области необходимо обосновать требования к нему, а затем провести сравнение различных методов по степени соответствия этим требованиям.

Проанализировав характер данных, представленных в таблицах 1 и 2, мы можем сделать три главных вывода:

1. Представленные данные являются неточными (нечеткими или интервальными) числовыми данными.

- 2. Данные представлены в различных единицах измерения (их 7: л, г/л, моль, моль ч/л, моль ч/л, моль/л, мкг %).
- 3. Суммарное количество показателей крови, по которым представлены данные, равно 24.

Следовательно, метод математического моделирования должен обеспечивать сопоставимую обработку нечетких числовых данных, представленных в различных единицах измерения по большому количеству факторов (показателей). Однако поиск такого математического метода представляет собой **проблему**.

Многофакторный анализ не подходит для этой цели, т.к. этот метод является неустойчивым по результатам анализа к малым вариациям исходных данных и требует их абсолютной точности, не позволяет исследовать более 5-7 факторов, предполагает, что исходные данные сопоставимы, т.е. являются безразмерными, например, стандартизированными, или представлены в одной единице измерения. Кроме того исследуемые показатели крови скорее всего взаимозависимы, т.к. животное является ярко выраженной нелинейной системой, а факторный анализ требует независимости факторов и линейности объекта моделирования.

Всем обоснованным требованиям соответствует метод Автоматизированного системно-когнитивного анализа (АСК-анализа) [2-7]¹.

1. Кратко об АСК-анализе и системе «Эйдос»

Об АСК-анализе и системе «Эйдос» есть много информации, представленной в 35 монографиях, 525 статьях, 30 свидетельствах РосПатента и других источниках, доступ к которым можно получить на сайте автора [6]. Обзор АСК-анализа и его программного инструментария — интеллектуальной системы «Эйдос» дан в работе [2]. Математическая модель и основные теоретические понятия АСК-анализа кратко раскрыты в работе [7].

Тем ни менее данный метод математического моделирования остается сравнительно малоизвестным, поэтому авторы считают целесообразным привести здесь его краткое описание.

1.2. Суть метода математического моделирования АСК-анализа и частные критерии

Математическая модель АСК-анализа и системы «Эйдос» основана на системной нечеткой интервальной математике [7] и обеспечивает сопоставимую обработку больших объемов фрагментированных и зашумленных взаимозависимых (нелинейных) данных, представленных в различных типах шкал (номинальных, порядковых и числовых) и различных единицах измерения [8].

Суть математической модели АСК-анализа состоит в следующем.

¹ См. также: http://lc.kubagro.ru/aidos/Presentation Aidos-online.pdf

Будем считать, что нам удалось смоделировать объект моделирования, если мы определили силу и направление влияния каждого значения фактора на объект моделирования.

Представим себе, что факторам соответствуют оси некоторого пространства, которое мы назовем пространством факторов. Факторы будем называть описательными шкалами [8].

Будущие состояния объекта моделирования будем описывать с помощью классификационных шкал, значения которых являются классами и соответствуют конкретным состояниям объекта моделирования.

Таким образом нам необходимо найти закон отображения пространства значений факторов, действующих на объект моделирования, на пространство будущих состояний объекта моделирования. Подобные отображения называются многомерными функциями, а само отображение в случае евклидова пространства конформным отображением или преобразованием (рисунок 3):

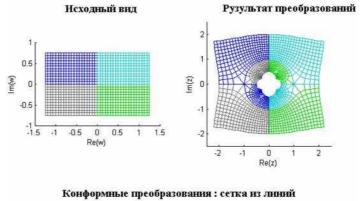


Рисунок 1. Конформное отображение (пример)²

Однако для решения поставленной в работе проблемы мы не можем использовать хорошо разработанный математический аппарат непрерывных функций и конформных отображений.

Причины этого просты и очевидны.

Этот аппарат разработан для метрических ортонормированных пространств, т.е. таких пространств, оси координат которых являются числовыми шкалами и взаимно перпендикулярны друг другу, причем размерность этих пространств должна быть одинаковой.

Если говорить о пространстве факторов и пространстве состояний объекта моделирования, то это означает, что все они должны измеряться в некоторых количественных единицах измерения и должны быть независимы друг от друга, т.е. объект моделирования должен быть линейным а количество описательных классификационных шкал должно быть одинаковым.

http://ej.kubagro.ru/2018/09/pdf/33.pdf

_

² Источник: http://matlab.exponenta.ru/imageprocess/book2/images-38/image004.jpg

В нашем же случае пространство факторов и пространство состояний объекта моделирования в общем случае являются неметрическими неортонормированными пространствами, т.е. могут иметь оси, являющиеся не только числовыми шкалами, но и порядковыми, и даже номинальными [8], и эти оси могут быть не взаимно-перпендикулярными друг к другу [8], а объект моделирования нелинейным [9], причем количество этих осей в пространстве факторов и пространстве состояний может быть разным.

Математическое моделирование отображений неметрических неортонормированных пространств разной размерности друг на друга является математической проблемой. В теории линейных и конформных преобразований предполагается, что все оси пространств являются числовыми и взаимно-перпендикулярными, а пространства имеют одинаковую размерность.

В нашем же случае:

- факторы могут измеряться в разных типах описательных шкал и единицах измерения;
- будущие состояния объекта моделирования также могут измеряться в разных типах классификационных шкал и в разных единицах измерения;
- количество описательных и классификационных шкал может быть не равным друг другу;
- описательные шкалы могут быть взаимозависимы, и классификационные шкалы также могут быть взаимозависимы.

Поэтому в данной работе предлагается математическое преобразование, которое мы назовем обобщенным конформным отображением.

Для этого необходимо преобразовать номинальные и порядковые шкал в один тип шкал: числовой, и всех шкал в одну единицу измерения. Это преобразование измерительных шкал называется «метризация» [8].

В качестве этой единицы измерения нами выбрана единица измерения количества информации [8]. Иначе говоря в математической модели АСКанализа мы рассчитываем, какое количество информации содержится в различных значениях факторов о том, что объект моделирования перейдет в те или иные будущие состояния [8]. Причем делается это непосредственно на основе эмпирических данных, которые могут быть большой размерности, фрагментированы, зашумлены и взаимозависимы.

Непосредственно на основе эмпирических данных рассчитывается матрица абсолютных частот (таблица 3). На ее основе рассчитываются матрицы условных и безусловных процентных распределений (таблица 4).

Отметим, что в АСК-анализе и его программном инструментарии интеллектуальной системе «Эйдос» используется два способа расчета матриц условных и безусловных процентных распределений:

<u>1-й способ</u>: в качестве $N_{\Sigma j}$ используется суммарное количество признаков по классу;

2-й способ: в качестве $N_{\Sigma j}$ используется суммарное количество объектов обучающей выборки по классу.

Таблица 3 – Матрица абсолютных частот

		Олица		татрица асселис		100010	
				Классы			
		1	•••	j	•••	W	Сумма
8	1	N_{11}		N_{1j}		N_{1W}	
Dod	•••						
Значения факторов	i	N_{i1}		N_{ij}		N_{iW}	$N_{i\Sigma} = \sum_{j=1}^{W} N_{ij}$
E H							
ē ē	М	$N_{ m M1}$		N_{Mj}		$N_{\scriptscriptstyle MW}$	
Суммарное количество Признаков по классу				$N_{\Sigma j} = \sum_{i=1}^{M} N_{ij}$			$oxed{N_{\Sigma\Sigma} = \sum_{i=1}^{W} \sum_{j=1}^{M} N_{ij}}$
Суммарное количество объектов обучающей выборки по классу				$N_{\Sigma j}$			$N_{\Sigma\Sigma} = \sum_{j=1}^{W} N_{\Sigma j}$

Таблица 4 – Матрица условных и безусловных процентных распределений

			Классы	Безусловная					
		1	 j	 W	вероятность признака				
	1	P_{11}	P_{1j}	P_{1W}					
000	•••								
Значения факторов	i	P_{i1}	$P_{ij} = \frac{N_{ij}}{N_{\Sigma j}}$	P_{iW}	$P_{i\Sigma} = \frac{N_{i\Sigma}}{N_{\Sigma\Sigma}}$				
3.	•••								
	M	$P_{ m M1}$	P_{Mj}	P_{MW}					
Безусловероятн класс	ость		$P_{\Sigma j}$						

Затем на основе таблицы 4 с использованием частных критериев, приведенных таблице 5 рассчитываются матрицы системно-когнитивных моделей (таблица 6).

Таблица 5 – Различные аналитические формы частных критериев знаний

Таолица 3 — Газличные аналит		астного критерия
Наименование модели знаний	через	через
и частный критерий	относительные частоты	абсолютные частоты
ABS , матрица абсолютных частот		N_{ij}
PRC1, матрица условных и безусловных процентных распределений, в качестве N_{Σ_j} используется суммарное количество признаков по классу		$P_{ij} = rac{N_{ij}}{N_{\Sigma j}}$
PRC2, матрица условных и безусловных процентных распределений, в качестве N_{Σ_j} используется суммарное количество объектов обучающей выборки по классу		$P_{ij} = rac{N_{ij}}{N_{\Sigma j}}$
INF1 , частный критерий: количество знаний по А.Харкевичу, 1-й вариант расчета вероятностей: <i>Nj</i> — суммарное количество признаков по <i>j</i> -му классу. Вероятность того, что если у объекта j-го класса обнаружен признак, то это i-й признак	$I_{ij} = \Psi \times Log_2 \frac{P_{ij}}{P_i}$	$I_{ij} = \Psi \times Log_2 \frac{N_{ij}N}{N_iN_j}$
INF2 , частный критерий: количество знаний по А.Харкевичу, 2-й вариант расчета вероятностей: <i>Nj</i> — суммарное количество объектов по <i>j</i> -му классу. Вероятность того, что если предъявлен объект <i>j</i> -го класса, то у него будет обнаружен <i>i</i> -й признак.	$I_{ij} = \Psi \times Log_2 \frac{P_{ij}}{P_i}$	$I_{ij} = \Psi \times Log_2 \frac{N_{ij}N}{N_i N_j}$
INF3, частный критерий: Хи-квадрат: разности между фактическими и теоретически ожидаемыми абсолютными частотами		$I_{ij} = N_{ij} - \frac{N_i N_j}{N}$
INF4 , частный критерий: ROI - Return On Investment, 1-й вариант расчета вероятностей: <i>Nj</i> — суммарное количество признаков по <i>j</i> -му классу	$I_{ij} = \frac{P_{ij}}{P_i} - 1 = \frac{P_{ij} - P_i}{P_i}$	$I_{ij} = \frac{N_{ij}N}{N_iN_j} - 1$
INF5 , частный критерий: ROI - Return On Investment, 2-й вариант расчета вероятностей: <i>Nj</i> — суммарное количество объектов по <i>j</i> -му классу	$I_{ij} = \frac{P_{ij}}{P_i} - 1 = \frac{P_{ij} - P_i}{P_i}$	$I_{ij} = \frac{N_{ij}N}{N_iN_j} - 1$
INF6 , частный критерий: разность условной и безусловной вероятностей, 1 -й вариант расчета вероятностей: Nj — суммарное количество признаков по j -му классу	$I_{ij} = P_{ij} - P_i$	$I_{ij} = \frac{N_{ij}}{N_j} - \frac{N_i}{N}$
INF7 , частный критерий: разность условной и безусловной вероятностей, 2-й вариант расчета вероятностей: Nj – суммарное количество объектов по j -му классу	$I_{ij} = P_{ij} - P_i$	$I_{ij} = \frac{N_{ij}}{N_j} - \frac{N_i}{N}$

Обозначения к таблице 3:

i – значение прошлого параметра;

ј - значение будущего параметра;

- N_{ii} количество встреч j-го значения будущего параметра при i-м значении прошлого параметра;
 - M суммарное число значений всех прошлых параметров;
 - W суммарное число значений всех будущих параметров.
- N_{i} количество встреч i-м значения прошлого параметра по всей выборке;
- N_i количество встреч j-го значения будущего параметра по всей выборке;
- N количество встреч j-го значения будущего параметра при i-м значении прошлого параметра по всей выборке.
- I_{ii} частный критерий знаний: количество знаний в факте наблюдения і-го значения прошлого параметра о том, что объект перейдет в состояние, соответствующее ј-му значению будущего параметра;
- Ψ нормировочный коэффициент [1], преобразующий количество информации в формуле А.Харкевича в биты и обеспечивающий для нее соблюдение принципа соответствия с формулой Р.Хартли;
- P_{i} безусловная относительная частота встречи i-го значения прошлого параметра в обучающей выборке;
- P_{ii} условная относительная частота встречи i-го значения прошлого параметра при ј-м значении будущего параметра.

T	Таблица 6 – Матрица системно-когнитивной модели											
				Классь	J		Значимость					
		1	•••	j	•••	W	фактора					
)B	1	I_{11}		I_{1j}		I_{1W}	$\sigma_{1\Sigma} = \sqrt[2]{\frac{1}{W-1} \sum_{j=1}^{W} (I_{1j} - \bar{I}_1)^2}$					
obc	•••											
Значения факторов	i	I_{i1}		I_{ij}		I_{iW}	$\sigma_{i\Sigma} = \sqrt[2]{\frac{1}{W-1} \sum_{j=1}^{W} \left(I_{ij} - \bar{I}_{i}\right)^{2}}$					
на	•••											
Ē	M	$I_{ m M1}$		I_{Mj}		I_{MW}	$\sigma_{M\Sigma} = \sqrt[2]{\frac{1}{W-1} \sum_{j=1}^{W} \left(I_{Mj} - \bar{I}_{M} \right)^{2}}$					
Степ редук кла		$\sigma_{\scriptscriptstyle{\Sigma1}}$		$\sigma_{\scriptscriptstyle{\Sigma_j}}$		$\sigma_{_{\Sigma W}}$	$H = \sqrt[2]{\frac{1}{(W \cdot M - 1)} \sum_{j=1}^{W} \sum_{i=1}^{M} (I_{ij} - \overline{I})^{2}}$					

Суть этих методов в том, что вычисляется количество информации в факте наличия или определенной степени выраженности того или иного личностного свойства о том, что обладающий им кандидат будет проявлять определенную степень успешности профессиональной деятельности, работая на той или иной должности. Это позволяет сопоставимо и корректно обрабатывать разнородную информацию о респондентах, полученную с помощью различных тестов и других различных источников [7, 8].

На основе системно-когнитивных моделей, представленных в таблице 6 (отличаются частыми критериями), решаются задачи идентификации (классификации, распознавания, диагностики, прогнозирования), поддержки принятия решений (обратная задача прогнозирования), а также задача исследования моделируемой предметной области путем исследования ее системно-когнитивной модели.

Для решения этих задач в АСК-анализе и системе «Эйдос» в настоящее время используется два интегральных критерия, кратко описанные ниже.

1.3. Интегральные критерии и решение задач в АСК-анализе

Для решения задач идентификации (прогнозирования) и принятия решений применяются интегральные критерии.

Задача принятия управляющих решений представляет собой обратную задачу прогнозирования. Если при прогнозировании на основе значений факторов, воздействующих на объект управления, определяется в какое состояние он под их воздействием перейдет, но при принятии решений наоборот, по желательному (целевому) состоянию объекта управления определяется система значений факторов, обуславливающих переход объекта в это целевое состояние.

Не все модели обеспечивают решение обратной задачи прогнозирования. Для этого они должны обеспечивать многопараметрическую типизацию, т.е. создавать обобщенные образы в будущих состояний объекта управления. Как влияет на поведение объекта управления одно значение фактора отражено в системно-когнитивных моделях. Как влияние система факторов определяется с помощью интегральных критериев. В настоящее время в системе «Эйдос» используется два аддитивных интегральных критерия:

- сумма знаний;
- резонанс знаний.

1-й интегральный критерий «Сумма знаний» представляет собой суммарное количество знаний, содержащееся в системе значений факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.

Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний:

$$I_j = (\vec{I}_{ij}, \vec{L}_i).$$

В выражении круглыми скобками обозначено скалярное произведение. В координатной форме это выражение имеет вид:

$$I_{j} = \sum_{i=1}^{M} I_{ij} L_{i},$$

где: М – количество градаций описательных шкал (признаков);

$$\vec{I}_{ij} = \{I_{ij}\}$$
 – вектор состояния ј–го класса;

 $\vec{L}_{i} = \{L_{i}\}$ — вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив–локатор), т.е.:

$$\vec{L}_i = \begin{cases} 1, \textit{если } i - \breve{u} \; \phi \textit{актор действует}; \\ n, \textit{где} : n > 0, \textit{если } i - \breve{u} \; \phi \textit{актор действует с истинностью } n; \\ 0, \textit{если } i - \breve{u} \; \phi \textit{актор не действует}. \end{cases}$$

В текущей версии системы «Эйдос-X++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта c интенсивностью n, c. представлен n раз (например, буква «о» в слове «молоко» представлена d раза, а буква «м» — один раз).

2-й интегральный критерий «Семантический резонанс знаний» представляет собой *нормированное* суммарное количество знаний, содержащееся в системе факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.

<u>Интегральный критерий</u> представляет собой аддитивную функцию от частных критериев знаний и имеет вид:

$$I_{j} = \frac{1}{\sigma_{i}\sigma_{l}M} \sum_{i=1}^{M} \left(I_{ij} - \overline{I}_{j}\right) \left(L_{i} - \overline{L}\right),$$

где:

М – количество градаций описательных шкал (признаков);

 $\bar{\mathbf{I}}_{\mathbf{j}}$ — средняя информативность по вектору класса;

 \overline{L} — среднее по вектору объекта;

 $\sigma_{\rm j}$ — среднеквадратичное отклонение частных критериев знаний вектора класса;

 σ_1 — среднеквадратичное отклонение по вектору распознаваемого объекта.

$$\vec{I}_{ij} = \{I_{ij}\}$$
 – вектор состояния ј–го класса;

 $\vec{L}_{i} = \{L_{i}\}$ — вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив–локатор), т.е.:

$$\vec{L}_{i} = \begin{cases} 1, \, ecnu \, i - \check{u} \, \, \phi a \kappa mop \, \, \partial e\check{u} cm b y em; \\ n, \, z\partial e : n > 0, \, ecnu \, i - \check{u} \, \, \phi a \kappa mop \, \, \partial e\check{u} cm b y em \, c \, u cm u h h o cm ь ю \, n; \\ 0, \, ecnu \, i - \check{u} \, \, \phi a \kappa mop \, \, he \, \partial e\check{u} cm b y em. \end{cases}$$

В текущей версии системы «Эйдос-X++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта с интенсивностью n, т.е. представлен n раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» – один раз).

Свое наименование интегральный критерий сходства «Семантический резонанс знаний» получил потому, что по своей математической форме является корреляцией двух векторов: состояния j—го класса и состояния распознаваемого объекта.

Всем этим и обусловлен выбор АСК-анализа и его программного инструментария интеллектуальной системы «Эйдос» в качестве инструментария решения поставленной проблемы.

1.3. Этапы АСК-анализа

Поэтому в данной работе мы считаем целесообразным привести в упрощенной форме только этапы АСК-анализа, т.к. они, по сути, представляют собой этапы решения поставленных в работе вопросов [10]:

- 1. Когнитивная структуризация предметной области и подготовка Excel-файла исходных данных.
- 2. Формализация предметной области, т.е. автоматизированный ввод в систему Эйдос-X++ исходных данных из Excel-файла с помощью стандартного программного интерфейса системы (разработка классификационных и описательных шкал и градаций и обучающее выборки).
- 3. Синтез и верификация 3-х статистических и 7 системно-когнитивных моделей.
- 4. Определение наиболее достоверной модели и придание ей статуса текущей.
- 5. Решение задач идентификации, диагностики, классификации и прогнозирования.
 - 6. Решение задач поддержки принятия решений.
- 7. Исследование моделируемой предметной области путем исследования ее модели.

Ниже рассмотрим применение АСК-анализа и системы «Эйдос» для ответа на поставленные вопросы.

1.4. Выводы

Ниже некоторые особенности АСК-анализа и системы «Эйдос», обусловившие их выбор в качестве метода математического и численного моделирования:

- разработана в универсальной постановке, не зависящей от предметной области. Поэтому она является универсальной и может быть применена во многих предметных областях (http://lc.kubagro.ru/aidos/index.htm);
- находится в полном открытом бесплатном доступе (http://lc.kubagro.ru/aidos/_Aidos-X.htm), причем с актуальными исходными текстами (http://lc.kubagro.ru/__AIDOS-X.txt);
- является одной из первых отечественных систем искусственного интеллекта персонального уровня, т.е. она не требует от пользователя специальной подготовки в области технологий искусственного интеллекта (есть акт внедрения системы «Эйдос» 1987 года) (http://lc.kubagro.ru/aidos/aidos02/PR-4.htm);
- обеспечивает устойчивое выявление в сопоставимой форме силы и направления причинно-следственных зависимостей в неполных зашумленных взаимозависимых (нелинейных) данных очень большой размерности числовой и не числовой природы, измеряемых в различных типах шкал (номинальных, порядковых и числовых) и в различных единицах измерения (т.е. не предъявляет жестких требований к данным, котореы невозможно выполнить, а обрабатывает те данные, которые есть);
- содержит большое количество локальных (поставляемых с инсталляцией) и облачных учебных и научных приложений (в настоящее время их около 30 и 132, соответственно) (http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf);
- обеспечивает мультиязычную поддержку интерфейса на 44 языках. Языковые базы входят в инсталляцию и могут пополняться в автоматическом режиме;
- поддерживает on-line среду накопления знаний и широко используется во всем мире (http://aidos.byethost5.com/map3.php);
- обеспечивает преобразование исходных эмпирических данных в информацию, а ее в знания и решение с использованием этих знаний задач классификации, поддержки принятия решений и исследования предметной области путем исследования ее системно-когнитивной модели, генерируя при этом очень большое количество табличных и графических выходных форм (развития когнитивная графика), у многих из которых нет никаких аналогов в других системах (примеры форм можно посмотреть в работе: http://lc.kubagro.ru/aidos/aidos18_LLS/aidos18_LLS.pdf).

2. Синтез и верификация системно-когнитивной модели предметной области

2.1. Когнитивная структуризация предметной области и подготовка Excel-файла исходных данных

На этапе когнитивной структуризации предметной области мы решаем, что будем исследовать и на основе чего. В данном случае *мы хотели* бы прогнозировать размеры бычков по морфологическому, биохимическому и микроэлементному составу их крови.

В качестве источника исходных данных используем таблицы 1 и 2 [1]. Однако для целей работы мы объединим эти две таблицы в одну и вместо указания центрального значения с погрешностью укажем только центральное значением. В результате получим таблицу 7.

Таблица 7 – Исходные данные*

	тиолици т	пекодиые данны		
$N_{\underline{0}}$	Показатель	I группа	II группа	III группа
		(компактные)	(средние)	(крупные)
1.	Эритроциты, 10^{12} л	7,6	7,69	7,93
2.	Лейкоциты, 10 ⁹ л	6,62	6,59	6,63
3.	Гемоглобин, г/л	127,01	128,53	135,14
4.	Общий белок, г/л	76,58	77,92	79,47
5.	Альбулины, г/л	37,09	37,84	38,61
6.	Глобулины, г/л	38,37	39,3	40,11
7.	а-глобулин, г/л	12,28	12,65	12,98
8.	р-глобулин, г/л	11,7	11,98	12,15
9.	у-глобулин, г/л	14,39	14,67	14,98
10.	Азот общий, ммоль	2006,58	2019,81	2139,17
11.	Азот остаточный, ммоль	26,53	26,98	27,32
12.	Азот аминный, ммоль	6,87	6,93	7,21
13.	АСТ, моль ч/л	1,76	1,89	2,11
14.	АЛТ, ммоль ч/л	0,65	0,73	0,75
15.	Кислотная емкость, ммоль/л	109,77	109,89	111,08
16.	Са, ммоль/л	2,36	2,38	2,43
17.	Р, ммоль/л	1,84	1,88	1,91
18.	Витамин А, ммоль/л	2,13	2,16	2,18
19.	Содержание йода мкг %	8,4	9,2	9,7
20.	Содержание кобальта мкг %	8,6	9,1	9,5
21.	Содержание меди мкг %	296,1	304,3	308,7
22.	Содержание цинка мкг %	487,6	505,4	516,2
23.	Содержание марганца мкг %	4,7	5,1	5,5
24.	Содержание железа мкг %	35,6	36,2	38,9

*Источник [1]

Преобразуем таблицу 7 в форму, стандартную для системы «Эйдос» (таблица 8). Для этого мы его транспонировали (в MS Excel), продублировали колонку с группами по размерам, которая будет выступать в качестве классификационной шкалы (задает способ группировки, выделена желтым

фон), а также задали во всех числах 2 знака после запятой (заголовки и числа в описательных шкалах повернуты для экономии места).

Таблица 8 – Исходные данные в стандарте системы «Эйдос»

									' 1						, r	, O O									
Размер	Размер	Эритроциты, 10 ¹² л	Лейкоциты, 10^9 л	Гемоглобин, г/л	Общий белок, г/л	Альбулины, г/л	Глобулины, г/л	а-глобулин, г/л	р-глобулин, г/л	у-глобулин, г/л	Азот общий, ммоль	Азот остаточный, ммоль	Азот аминный, ммоль	АСТ, моль ч/л	АЛТ, ммоль ч/л	Кислотная емкость, ммоль/л	Са, ммоль/л	Р, ммоль/л	Витамин А, ммоль/л	Содержание йода мкг %	Содержание кобальта мкг %	Содержание меди мкг %	Содержание цинка мкг %	Содержание марганца мкг %	Содержание железа мкг %
I груп па (ком пакт ные)	I груп па (ком пакт ные)	7,60	6,62	127,01	76,58	37,09	38,37	12,28	11,70	14,39	2006,58	26,53	6,87	1,76	0,65	109,77	2,36	1,84	2,13	8,40	8,60	296,10	487,60	4,70	35,60
II груп па (сред ние)	П груп па (сред ние)	7,69	6,59	128,53	77,92	37,84	39,30	12,65	11,98	14,67	2019,81	26,98	6,93	1,89	0,73	109,89	2,38	1,88	2,16	9,20	9,10	304,30	505,40	5,10	36,20
III груп па (круп ные)	III груп па (круп ные)	7,93	6,63	135,14	79,47	38,61	40,11	12,98	12,15	14,98	2139,17	27,32	7,21	2,11	0,75	111,08	2,43	1,91	2,18	9,70	9,50	308,70	516,20	5,50	38,90

Таким образом, на этапе когнитивно-целевой структуризации предметной области мы решили, что в качестве классификационной шкалы мы будем использовать колонку «Размер», а в качестве описательных шкал следующие колонки:

- 1. Эритроциты, 10¹² л
- 2. Лейкоциты, 10⁹ л
- 3. Гемоглобин, г/л
- 4. Общий белок, г/л
- 5. Альбулины, г/л
- 6. Глобулины, г/л
- 7. а-глобулин, г/л
- 8. р-глобулин, г/л
- 9. у-глобулин, г/л
- 10. Азот общий, ммоль
- 11. Азот остаточный, ммоль
- 12. Азот аминный, ммоль
- 13. АСТ. моль ч/л
- 14. АЛТ, ммоль ч/л
- 15. Кислотная емкость, ммоль/л
- 16. Са, ммоль/л
- 17. Р, ммоль/л
- 18. Витамин А, ммоль/л

- 19. Содержание йода мкг %
- 20. Содержание кобальта мкг %
- 21. Содержание меди мкг %
- 22. Содержание цинка мкг %
- 23. Содержание марганца мкг %
- 24. Содержание железа мкг %

Специально отметим, что мы *полностью* приводим исходные данные в таблице 8, чтобы желающие могли проверить полученные в ней результаты и использовать их в научных и учебных целях. Для этих же целей создано облачное «Эйдос» приложение №133, которое любой пользователь системы может установить и исследовать в диспетчере приложений (режим 1.3) системы «Эйдос».

После получения таблицы 8 все готово для перехода к следующему этапу АСК-анализа, на котором выполняется формализация предметной области.

2.2. Формализация предметной области

На этапе формализации предметной области разрабатываются классификационные и описательные шкалы и градации и с их помощью кодируются исходные данные (таблица 8), в результате чего получается обучающая выборка, по сути, представляющая собой нормализованную базу исходных данных.

В системе «Эйдос» процесс формализации предметной области полностью автоматизирован и реализуется в режиме 2.3.2.2 (рисунок 2).

В экранной форме на рисунке 2 приведены реально использованные в данном режиме параметры.

После нажатия «ОК» через некоторое время появляется окно внутреннего калькулятора (рисунок 3):

В экранной форме на рисунке 3 мы видим, сколько текстовых и числовых классификационных и описательных шкал система обнаружила при заданных параметрах и сколько в них обнаружено градаций. Если обнаружены шкалы числового типа, то появляется возможность задать количество интервальных числовых значений в этих шкалах. Это делается отдельно для классификационных и описательных шкал, таким образом, число интервальных числовых значений в классификационных и описательных шкалах может отличаться. Если это число изменяется, то необходимо кликнуть по левой кнопке, а затем уже выходить на создание модели.

В результате выполнения данного режима формируются классификационные и описательные шкалы и градации и обучающая выборка (таблицы 9, 10 и 11):

Задайте тип файла исходных данных:	"Inp_data":	— Задайте параметры:						
♠ XLS - MS Excel-2003	Стандарт XLS-файла	 Нули и пробелы считать ОТСУТСТВИЕМ данных 						
C XLSX-MS Excel-2007(2010)	отагмартт со таки	С Нули и пробелы считать ЗНАЧЕНИЯМИ данных						
C DBF - DBASE IV (DBF/NTX)	Стандарт DBF-файла	□ Создавать БД средних по классам "Inp_dayr.dbf"?						
C CSV - Comma-Separated Values	Стандарт CSV-файла	Требования к файлу исходных данных						
Задайте диапазон столбцов классиф	икационных шкал:	Задайте диапазон столбцов описательных шкал:						
Начальный столбец классификацион	ных шкал: 2	Начальный столбец описательных шкал:						
Конечный столбец классификацион	ных шкал: 2	Конечный столбец описательных шкал: 26						
Задайте режим:		Задайте способ выбора размера интервалов:						
 Формализации предметной обла 	асти (на основе "Inp. data")	 Равные интервалы с разным числом наблюдений 						
С Генерации распознаваемой выбо	17 1	 Разные интервалы с равным числом наблюдений 						
Применить спец.интерпретацию		Применить спец интерпретацию текстовых полей признако начений текстовых полей "Inp_data":						
Интерпретация ТХТ-полей классов	E	Интерпретация ТХТ-полей признаков:						
Значения полей текстовых классы	ификационных шкал файла	Значения полей текстовых описательных шкал файла						
исходных данных "Inp_data" расст	иатриваются как целое	исходных данных "Inp_data" рассматриваются как целое						
√акие наименования ГРАДАЦИЙ чис⑥ Только интервальные числовые⑥ Только наименования интерваль	значения	(например: "1/3-{59873.0000000, 178545.6666667}") (например: "Минимальное")						

Рисунок 3. Экранная форма режима 2.3.2.2 системы «Эйдос»

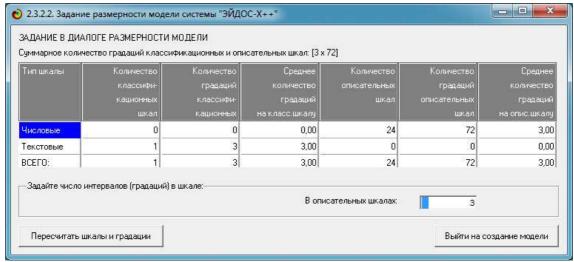


Рисунок 4. Экранная форма внутреннего калькулятора режима 2.3.2.2.

Таблица 9 – Классификационные шкалы и градации

KOD_CLS	NAME_CLS
1	РАЗМЕР-І группа (компактные)
2	РАЗМЕР-II группа (средние)
3	РАЗМЕР-III группа (крупные)

Таблица 10 – Описательные шкалы и градации

KOD ATR	NAME_ATR
1	ЭРИТРОЦИТЫ, 1012 Л-1/3-{7.6000000, 7.7100000}
2	ЭРИТРОЦИТЫ, 1012 Л-2/3-{7.7100000, 7.8200000}
3	ЭРИТРОЦИТЫ, 1012 Л-3/3-{7.8200000, 7.9200000}
4	ЛЕЙКОЦИТЫ, 109 Л-1/3-{6.5900000, 6.6033333}
5	ЛЕЙКОЦИТЫ, 109 Л-1/3-{0.0900000, 0.00033333}
6	ЛЕЙКОЦИТЫ, 109 Л-3/3-{6.6166667, 6.6300000}
7	ГЕМОГЛОБИН, Г/Л-1/3-{127.0100000, 129.7200000}
8	ГЕМОГЛОВИН, Г/Л-2/3-{127.0100000, 129.7200000} ГЕМОГЛОБИН, Г/Л-2/3-{129.7200000, 132.4300000}
9	ГЕМОГЛОБИН, Г/Л-3/3-{132.4300000, 135.1400000}
10	ОБЩИЙ БЕЛОК, Г/Л-1/3-{76.5800000, 77.5433333}
11	ОБЩИЙ БЕЛОК, Г/Л-1/3-{70.3000000, 77.3433333}
12	ОБЩИЙ БЕЛОК, Г/Л-2/3-{77.3433333, 78.3000007}
13	АЛЬБУЛИНЫ, Г/Л-1/3-{37.0900000, 37.5966667}
14	АЛЬБУЛИНЫ, Г/Л-2/3-{37.5966667, 38.1033333}
15	АЛЬБУЛИНЫ, Г/Л-3/3-{38.1033333, 38.6100000}
16	ГЛОБУЛИНЫ, Г/Л-1/3-{38.3700000, 38.9500000}
17	ГЛОБУЛИНЫ, Г/Л-2/3-{38.9500000, 39.5300000}
18	ГЛОБУЛИНЫ, Г/Л-3/3-{39.5300000, 40.1100000}
19	А-ГЛОБУЛИН, Г/Л-1/3-{12.2800000, 12.5133333}
20	А-ГЛОБУЛИН, Г/Л-2/3-{12.5133333, 12.7466667}
21	А-ГЛОБУЛИН, Г/Л-3/3-{12.7466667, 12.9800000}
22	Р-ГЛОБУЛИН, Г/Л-1/3-{11.7000000, 11.8500000}
23	Р-ГЛОБУЛИН, Г/Л-2/3-{11.8500000, 12.00000000}
24	Р-ГЛОБУЛИН, Г/Л-3/3-{12.0000000, 12.1500000}
25	У-ГЛОБУЛИН, Г/Л-1/3-{14.3900000, 14.5866667}
26	У-ГЛОБУЛИН, Г/Л-2/3-{14.5866667, 14.7833333}
27	У-ГЛОБУЛИН, Г/Л-3/3-{14.7833333, 14.9800000}
28	АЗОТ ОБЩИЙ, ММОЛЬ-1/3-{2006.5800000, 2050.7766667}
29	АЗОТ ОБЩИЙ, ММОЛЬ-2/3-{2050.7766667, 2094.9733333}
30	АЗОТ ОБЩИЙ, ММОЛЬ-3/3-{2094.9733333, 2139.1700000}
31	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-1/3-{26.5300000, 26.7933333}
32	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-2/3-{26.7933333, 27.0566667}
33	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-3/3-{27.0566667, 27.3200000}
34	АЗОТ АМИННЫЙ, ММОЛЬ-1/3-{6.8700000, 6.9833333}
35	АЗОТ АМИННЫЙ, ММОЛЬ-2/3-{6.9833333, 7.0966667}
36	АЗОТ АМИННЫЙ, ММОЛЬ-3/3-{7.0966667, 7.2100000}
37	АСТ, МОЛЬ Ч/Л-1/3-{1.7600000, 1.8766667}
38	АСТ, МОЛЬ Ч/Л-2/3-{1.8766667, 1.9933333}
39	АСТ, МОЛЬ Ч/Л-3/3-{1.9933333, 2.1100000}
40	АЛТ, ММОЛЬ Ч/Л-1/3-{0.6500000, 0.6833333}
41	АЛТ, ММОЛЬ Ч/Л-2/3-{0.6833333, 0.7166667}
42	АЛТ, ММОЛЬ Ч/Л-3/3-{0.7166667, 0.7500000}
43	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-1/3-{109.7700000, 110.2066667}
44	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-2/3-{110.2066667, 110.6433333}

45	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-3/3-{110.6433333, 111.0800000}
46	СА, ММОЛЬ/Л-1/3-{2.3600000, 2.3833333}
47	СА, ММОЛЬ/Л-2/3-{2.3833333, 2.4066667}
48	СА, ММОЛЬ/Л-3/3-{2.4066667, 2.4300000}
49	Р, ММОЛЬ/Л-1/3-{1.8400000, 1.8633333}
50	Р, ММОЛЬ/Л-2/3-{1.8633333, 1.8866667}
51	Р, ММОЛЬ/Л-3/3-{1.8866667, 1.9100000}
52	ВИТАМИН А, ММОЛЬ/Л-1/3-{2.1300000, 2.1466667}
53	ВИТАМИН А, ММОЛЬ/Л-2/3-{2.1466667, 2.1633333}
54	ВИТАМИН А, ММОЛЬ/Л-3/3-{2.1633333, 2.1800000}
55	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333}
56	СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667}
57	СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000}
58	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000}
59	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000}
60	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000}
61	СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000}
62	СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000}
63	СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{304.5000000, 308.7000000}
64	СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-{487.6000000, 497.1333333}
65	СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667}
66	СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{506.6666667, 516.2000000}
67	СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.9666667}
68	СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333}
69	СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{5.2333333, 5.5000000}
70	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-1/3-{35.6000000, 36.7000000}
71	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-2/3-{36.7000000, 37.8000000}
72	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{37.8000000, 38.9000000}

Таблица 11 – Обучающая выборка

														1											
Размер	Размер	Эритроциты, 10 ¹² л	Лейкоциты, 10 ⁹ л	Гемоглобин, г/л	Общий белок, г/л	Альбулины, г/л	Глобулины, г/л	а-глобулин, г/л	р-глобулин, г/л	у-глобулин, г/л	Азот общий, ммоль	Азот остаточный, ммоль	Азот аминный, ммоль	АСТ, моль ч/л	АЛТ, ммоль ч/л	Кислотная емкость, ммоль/л	Са, ммоль/л	Р, ммоль/л	Витамин А, ммоль/л	Содержание йода мкг %	Содержание кобальта мкг %	Содержание меди мкг %	Содержание цинка мкг %	Содержание марганца мкг %	Содержание железа мкг %
I группа (компакт- ные)	1	1	6	7	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	70
II группа (средние)	2	1	4	7	11	14	17	20	23	26	28	32	34	38	42	43	46	50	53	56	59	62	65	68	70
III группа (крупные)	3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60	63	66	69	72

Обучающая выборка по сути представляет собой нормализованную с помощью классификационных и описательных шкал и градаций (таблицы 9 и 10) базу исходных данных (таблица 8). Это делает исходные данные готовыми для обработки в программной системе и выполнения следующего этапа АСК-анализа: синтеза и верификации модели.

2.3. Синтез и верификация статистических и системно-когнитивных моделей

Синтез и верификация моделей осуществляется в режиме 3.5 (рисунок 5):

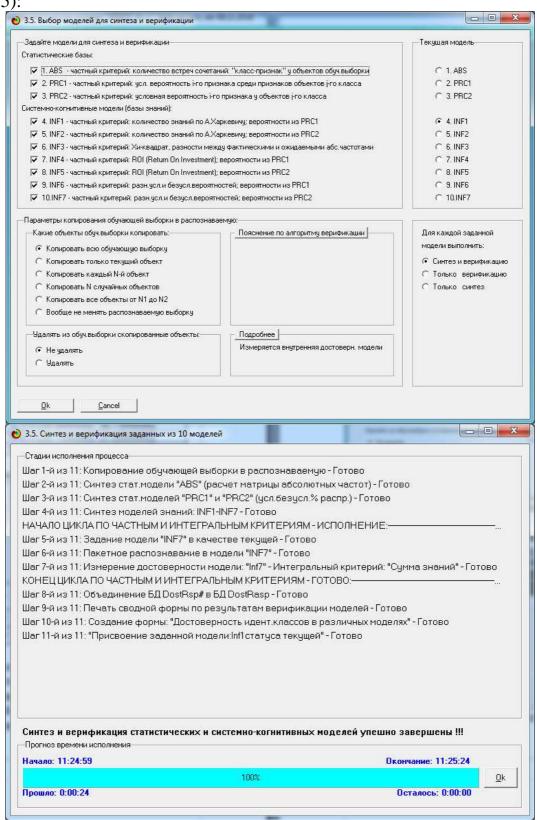


Рисунок 5. Экранные формы режима синтеза и верификации моделей

Ниже в таблице 12 приведена созданная статистическая модель Abs (матрица абсолютных частом), а в таблицах 13 и 14 системно-когнитивные модели (СК-модели): Inf1 и Inf3. Описание всех статистических и СК-моделей, создаваемых текущей версией системой «Эйдос», приведено в работе [8].

Таблица 12 – Матрица абсолютных частот (статистическая модель Abs)

	ца 12 – Матрица аосолютных част						
KOD_PR	NAME 3PMTPOLIMTEL 1012 F-1/2-(7 6000000, 7 7100000)	CLS1				SREDN 0.6666667	DISP 0.5773503
2	ЭРИТРОЦИТЫ, 1012 Л-1/3-{7.6000000, 7.7100000} ЭРИТРОЦИТЫ, 1012 Л-2/3-{7.7100000, 7.8200000}	1,0 0,0	1,0 0,0	0,0	2	0,6666667	0,5773503 0,0000000
3	ЭРИТРОЦИТЫ, 1012 Л-2/3-{7.7 100000, 7.8200000} ЭРИТРОЦИТЫ, 1012 Л-3/3-{7.8200000, 7.9300000}	0,0	0,0	1,0	1	0,3333333	0,5773503
4	ЛЕЙКОЦИТЫ, 109 Л-1/3-{6.5900000, 6.60333333}	0,0	1,0	0,0	1	0,3333333	0,5773503
5	ЛЕЙКОЦИТЫ, 109 Л-2/3-{6.60333333, 6.6166667}	0,0	0,0	0,0	0	0,0000000	0,0000000
6	ЛЕЙКОЦИТЫ, 109 Л-3/3-{6.6166667, 6.6300000}	1,0	0,0	1,0	2	0,6666667	0,5773503
7	ГЕМОГЛОБИН, Г/Л-1/3-{127.0100000, 129.7200000}	1,0	1,0	0,0	2	0,6666667	0,5773503
8	ГЕМОГЛОБИН, Г/Л-2/3-{129.7200000, 132.4300000}	0,0	0,0	0,0	0	0,0000000	0,0000000
9 10	ГЕМОГЛОБИН, Г/Л-3/3-{132.4300000, 135.1400000} ОБЩИЙ БЕЛОК, Г/Л-1/3-{76.5800000, 77.5433333}	0,0 1,0	0,0	1,0 0,0	1	0,3333333 0,3333333	0,5773503 0,5773503
11	ОБЩИЙ БЕЛОК, Г/Л-1/3-{76.58000000, 77.5433333}	0,0	1,0	0,0	1	0,3333333	0,5773503
12	ОБЩИЙ БЕЛОК, Г/Л-3/3-{78.5066667, 79.4700000}	0,0	0,0	1,0	1	0,3333333	0,5773503
13	АЛЬБУЛИНЫ, Г/Л-1/3-{37.0900000, 37.5966667}	1,0	0,0	0,0	1	0,3333333	0,5773503
14	АЛЬБУЛИНЫ, Г/Л-2/3-{37.5966667, 38.10333333}	0,0	1,0	0,0	1	0,3333333	0,5773503
15	АЛЬБУЛИНЫ, Г/Л-3/3-{38.1033333, 38.6100000}	0,0	0,0	1,0	1	0,3333333	0,5773503
16	ГЛОБУЛИНЫ, Г/Л-1/3-{38.3700000, 38.9500000}	1,0	0,0	0,0	1	0,3333333	0,5773503
17 18	ГЛОБУЛИНЫ, Г/Л-2/3-{38.9500000, 39.5300000}	0,0	1,0 0,0	0,0	1	0,3333333 0,3333333	0,5773503
19	ГЛОБУЛИНЫ, Г/Л-3/3-{39.5300000, 40.1100000} А-ГЛОБУЛИН, Г/Л-1/3-{12.2800000, 12.5133333}	0,0 1,0	0,0	1,0 0,0	1	0,3333333	0,5773503 0,5773503
20	А-ГЛОБУЛИН, Г/Л-1/3-{12.2800000, 12.3133333} А-ГЛОБУЛИН, Г/Л-2/3-{12.5133333, 12.7466667}	0,0	1,0	0,0	1	0,3333333	0,5773503
21	А-ГЛОБУЛИН, Г/Л-3/3-{12.7466667, 12.9800000}	0,0	0,0	1,0	1	0,3333333	0,5773503
22	Р-ГЛОБУЛИН, Г/Л-1/3-{11.7000000, 11.8500000}	1,0	0,0	0,0	1	0,3333333	0,5773503
23	Р-ГЛОБУЛИН, Г/Л-2/3-{11.8500000, 12.00000000}	0,0	1,0	0,0	1	0,3333333	0,5773503
24	Р-ГЛОБУЛИН, Г/Л-3/3-{12.0000000, 12.1500000}	0,0	0,0	1,0	1	0,3333333	0,5773503
25	У-ГЛОБУЛИН, Г/Л-1/3-{14.3900000, 14.5866667}	1,0	0,0	0,0	1	0,3333333	0,5773503
26	У-ГЛОБУЛИН, Г/Л-2/3-{14.5866667, 14.7833333}	0,0	1,0	0,0	1	0,3333333	0,5773503
27	У-ГЛОБУЛИН, Г/Л-3/3-{14.7833333, 14.9800000}	0,0	0,0	1,0 0,0	1	0,3333333	0,5773503 0,5773503
28 29	АЗОТ ОБЩИЙ, ММОЛЬ-1/3-{2006.5800000, 2050.7766667} АЗОТ ОБЩИЙ, ММОЛЬ-2/3-{2050.7766667, 2094.9733333}	1,0 0,0	1,0 0,0	0,0	0	0,6666667 0,0000000	0,0000000
30	АЗОТ ОБЩИЙ, ММОЛЬ-2/3-{2000:7700007, 2004:9700007}	0,0	0,0	1,0	1	0,3333333	0,5773503
31	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-1/3-{26.5300000, 26.7933333}	1,0	0,0	0,0	1	0,3333333	0,5773503
32	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-2/3-{26.7933333, 27.0566667}	0,0	1,0	0,0	1	0,3333333	0,5773503
33	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-3/3-{27.0566667, 27.3200000}	0,0	0,0	1,0	1	0,3333333	0,5773503
34	АЗОТ АМИННЫЙ, ММОЛЬ-1/3-{6.8700000, 6.9833333}	1,0	1,0	0,0	2	0,6666667	0,5773503
35	АЗОТ АМИННЫЙ, ММОЛЬ-2/3-{6.9833333, 7.0966667}	0,0	0,0	0,0	0	0,0000000	0,0000000
36 37	АЗОТ АМИННЫЙ, ММОЛЬ-3/3-{7.0966667, 7.2100000} АСТ, МОЛЬ Ч/Л-1/3-{1.7600000, 1.8766667}	0,0 1,0	0,0	1,0	1	0,3333333 0,3333333	0,5773503 0,5773503
38	АСТ, МОЛЬ Ч/Л-2/3-{1.8766667, 1.9933333}	0,0	1,0	0,0	1	0,3333333	0,5773503
39	АСТ, МОЛЬ Ч/Л-3/3-{1.9933333, 2.1100000}	0,0	0,0	1,0	1	0,3333333	0,5773503
40	АЛТ, ММОЛЬ Ч/Л-1/3-{0.6500000, 0.6833333}	1,0	0,0	0,0	1	0,3333333	0,5773503
41	АЛТ, ММОЛЬ Ч/Л-2/3-{0.6833333, 0.7166667}	0,0	0,0	0,0	0	0,0000000	0,0000000
42	АЛТ, ММОЛЬ Ч/Л-3/3-{0.7166667, 0.7500000}	0,0	1,0	1,0	2	0,6666667	0,5773503
43	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-1/3-{109.7700000, 110.2066667}	1,0	1,0	0,0	2	0,6666667	0,5773503
44 45	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-2/3-{110.2066667, 110.6433333} КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-3/3-{110.6433333, 111.0800000}	0,0	0,0	0,0 1,0	0	0,0000000 0,3333333	0,0000000 0,5773503
46	СА, ММОЛЬ/Л-1/3-{2.3600000, 2.3833333}	1,0	1,0	0,0	2	0,6666667	0,5773503
47	СА, ММОЛЬ/Л-2/3-{2.3833333, 2.4066667}	0,0	0,0	0,0	0	0,0000000	0,0000000
48	СА, ММОЛЬ/Л-3/3-{2.4066667, 2.4300000}	0,0	0,0	1,0	1	0,3333333	0,5773503
49	Р, ММОЛЬ/Л-1/3-{1.8400000, 1.8633333}	1,0	0,0	0,0	1	0,3333333	0,5773503
50	Р, ММОЛЬ/Л-2/3-{1.8633333, 1.8866667}	0,0	1,0	0,0	1	0,3333333	0,5773503
51	P, ММОЛЬ/Л-3/3-{1.8866667, 1.9100000}	0,0	0,0	1,0	1	0,3333333	0,5773503
52	ВИТАМИН А, ММОЛЬ/Л-1/3-{2.1300000, 2.1466667} ВИТАМИН А, ММОЛЬ/Л-2/3-{2.1466667, 2.1633333}	1,0 0,0	0,0 1,0	0,0	1	0,3333333 0,3333333	0,5773503 0,5773503
53 54	ВИТАМИН А, ММОЛЬ/Л-3/3-{2.1400007, 2.1633333}	0,0	0,0	1,0	1	0,3333333	0,5773503
55							0,5773503
			0.0	0.0	1	U.33333333	
56	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333}	1,0	0,0	0,0	1	0,3333333 0,3333333	0,5773503
56 57		1,0	0,0 1,0 0,0				
57 58	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.83333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000}	1,0 0,0 0,0 1,0	1,0 0,0 0,0	0,0 1,0 0,0	1	0,3333333 0,3333333 0,3333333	0,5773503 0,5773503 0,5773503
57 58 59	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000}	1,0 0,0 0,0 1,0 0,0	1,0 0,0 0,0 1,0	0,0 1,0 0,0 0,0	1 1 1	0,3333333 0,3333333 0,3333333 0,3333333	0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.60000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000}	1,0 0,0 0,0 1,0 0,0 0,0	1,0 0,0 0,0 1,0 0,0	0,0 1,0 0,0 0,0 0,0	1 1 1 1	0,3333333 0,3333333 0,3333333 0,3333333 0,3333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000}	1,0 0,0 0,0 1,0 0,0 0,0 0,0	1,0 0,0 0,0 1,0 0,0 0,0	0,0 1,0 0,0 0,0 1,0 0,0	1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0	1,0 0,0 0,0 1,0 0,0 0,0 1,0	0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{304.5000000, 308.7000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0	1 1 1 1 1 1 1	0,3333333 0,3333333 0,3333333 0,3333333 0,3333333 0,3333333 0,3333333 0,3333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0	1,0 0,0 0,0 1,0 0,0 0,0 1,0	0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.2000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{497.1000000, 308.7000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{497.1333333, 506.6666667} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{506.6666667, 516.2000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1	0,3333333 0,3333333 0,3333333 0,3333333 0,3333333 0,3333333 0,3333333 0,3333333 0,3333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.50000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.30000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{487.6000000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667} СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{506.666667, 516.2000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.9666667}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66 67 68	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.2000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-(300.3000000, 300.3000000) СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-(300.3000000, 300.3000000) СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-(487.6000000, 497.1333333) СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-(497.1333333, 506.6666667) СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-(306.6666667, 516.2000000) СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.96666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.96666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 0,0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66 67 68	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{487.6000000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{506.6666667, 516.2000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333}	1,0 0,0 1,0 0,0 1,0 0,0 0,0 0,0 0,0 1,0 0,0 0	1,0 0,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66 67 68 69 70	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{496.1000000, 304.5000000} СОДЕРЖАНИЕ ЩИНКА МКГ %-3/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{497.6300000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667} СОДЕРЖАНИЕ ЩИКА МКГ %-3/3-{506.6666667, 5.20300000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.9666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333, 5.5000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{6.2333333, 5.5000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{6.2333333, 5.5000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{6.2333333, 5.5000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 0,0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66 67 68 69 70	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 300.3000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{496.000000, 304.5000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-{487.6000000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 56.6666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.9666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{5.60600000, 36.7000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{5.6000000, 36.7000000} СОДЕРЖАНИЕ МЕРГАНЦА МКГ %-3/3-{5.6000000, 36.7000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-1/3-{3.6000000, 37.8000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 0,0	0,0 1,0 0,0 0,0 0,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,33033 0,300000000	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66 67 68 69 70	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{496.1000000, 304.5000000} СОДЕРЖАНИЕ ЩИНКА МКГ %-3/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{497.6300000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667} СОДЕРЖАНИЕ ЩИКА МКГ %-3/3-{506.6666667, 5.20300000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.9666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333, 5.5000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{6.2333333, 5.5000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{6.2333333, 5.5000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{6.2333333, 5.5000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 0,0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{300.3000000, 308.7000000} СОДЕРЖАНИЕ ЩИНКА МКГ %-3/3-{497.000000, 308.7000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{496.6066667, 516.2000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{606.666667, 516.2000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.9666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{5000000, 36.7000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{5000000, 36.7000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{50000000, 36.7000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{5000000, 36.7000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{35.6000000, 36.7000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{37.8000000, 38.9000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333 0,333333	0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503 0,5773503
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.26666667} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.26666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{8.6000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{300.3000000, 304.5000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{487.6000000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-{47.6000000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{106.6666667, 516.2000000} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.70000000, 4.9666667} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{4.9666667, 5.2333333} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-1/3-(36.6000000, 37.6000000) СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-1/3-(36.7000000, 37.8000000) СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{37.8000000, 38.9000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{37.8000000, 38.9000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{37.8000000, 38.9000000}	1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 1,0 0,0 0	1,0 0,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 1,0 0,0 0	0,0 1,0 0,0 0,0 1,0 0,0 0,0 1,0 0,0 0,0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,333333 0,33333 0,3333 0,3333 0,3333 0,3333 0,3333 0,3333 0,3333 0,3333 0,3333 0,3333 0,030 0,000	0,5773503 0,5773503

Таблица 13 – Матрица информативностей (СК-модель Inf1)

1 6	аблица 13 – Матрица информатив	ност	еи (С	∪K-N	10делі	o IIII I)
KOD_PR	NAME	CLS1	CLS2	CLS3	SUMMA	SREDN	DISP
1	ЭРИТРОЦИТЫ, 1012 Л-1/3-{7.6000000, 7.7100000}	0,150	0,150	0,000	0,301	0,100	0,087
2	ЭРИТРОЦИТЫ, 1012 Л-2/3-{7.7100000, 7.8200000}	0,000	0,000	0,000	0,000	0,000	0,000
3	ЭРИТРОЦИТЫ, 1012 Л-3/3-{7.8200000, 7.9300000}	0,000	0,000	0,407	0,407	0,136	0,235
4	ЛЕЙКОЦИТЫ, 109 Л-1/3-{6.5900000, 6.6033333}	0,000	0,407	0,000	0,407	0,136	0,235
5	ЛЕЙКОЦИТЫ, 109 Л-2/3-{6.60333333, 6.6166667}	0,000	0,000	0,000	0,000	0,000	0,000
6	ЛЕЙКОЦИТЫ, 109 Л-3/3-{6.6166667, 6.6300000}	0,150	0,000	0,150	0,301	0,100	0,087
7	ГЕМОГЛОБИН, Г/Л-1/3-{127.0100000, 129.7200000}	0,150	0,150	0,000	0,301	0,100	0,087
8	ГЕМОГЛОБИН, Г/Л-2/3-{129.7200000, 132.4300000}	0,000	0,000	0,000	0,000	0,000	0,000
9	ГЕМОГЛОБИН, Г/Л-3/3-{132.4300000, 135.1400000}	0,000	0,000	0,407	0,407	0,136	0,235
10 11	ОБЩИЙ БЕЛОК, Г/Л-1/3-{76.5800000, 77.5433333} ОБЩИЙ БЕЛОК, Г/Л-2/3-{77.5433333, 78.5066667}	0,407	0,000	0,000	0,407 0,407	0,136 0,136	0,235 0,235
12	ОБЩИЙ БЕЛОК, Г/Л-2/3-{77.3433333, 78.3000007}	0,000	0,000	0,000	0,407	0,136	0,235
13	АЛЬБУЛИНЫ, Г/Л-1/3-{37.0900000, 37.5966667}	0,407	0,000	0,000	0,407	0,136	0,235
14	АЛЬБУЛИНЫ, Г/Л-2/3-{37.5966667, 38.1033333}	0,000	0,407	0,000	0,407	0,136	0,235
15	АЛЬБУЛИНЫ, Г/Л-3/3-{38.1033333, 38.6100000}	0.000	0,000	0,407	0,407	0,136	0,235
16	ГЛОБУЛИНЫ, Г/Л-1/3-{38.3700000, 38.9500000}	0,407	0,000	0,000	0,407	0,136	0,235
17	ГЛОБУЛИНЫ, Г/Л-2/3-{38.9500000, 39.5300000}	0,000	0,407	0,000	0,407	0,136	0,235
18	ГЛОБУЛИНЫ, Г/Л-3/3-{39.5300000, 40.1100000}	0,000	0,000	0,407	0,407	0,136	0,235
19	А-ГЛОБУЛИН, Г/Л-1/3-{12.2800000, 12.5133333}	0,407	0,000	0,000	0,407	0,136	0,235
20	А-ГЛОБУЛИН, Г/Л-2/3-{12.5133333, 12.7466667}	0,000	0,407	0,000	0,407	0,136	0,235
21	А-ГЛОБУЛИН, Г/Л-3/3-{12.7466667, 12.9800000}	0,000	0,000	0,407	0,407	0,136	0,235
22	Р-ГЛОБУЛИН, Г/Л-1/3-{11.7000000, 11.8500000}	0,407	0,000	0,000	0,407	0,136	0,235
23	Р-ГЛОБУЛИН, Г/Л-2/3-{11.8500000, 12.0000000}	0,000	0,407	0,000	0,407	0,136	0,235
24	Р-ГЛОБУЛИН, Г/Л-3/3-{12.0000000, 12.1500000}	0,000	0,000	0,407	0,407	0,136	0,235
25	У-ГЛОБУЛИН, Г/Л-1/3-{14.3900000, 14.5866667}	0,407	0,000	0,000	0,407	0,136	0,235
26	У-ГЛОБУЛИН, Г/Л-2/3-{14.5866667, 14.7833333}	0,000	0,407	0,000	0,407	0,136	0,235
27 28	У-ГЛОБУЛИН, Г/Л-3/3-{14.7833333, 14.9800000} АЗОТ ОБЩИЙ, ММОЛЬ-1/3-{2006.5800000, 2050.7766667}	0,000	0,000	0,407	0,407 0,301	0,136 0,100	0,235
29	АЗОТ ОБЩИЙ, ММОЛЬ-1/3-{2006.58000000, 2050.7766667} АЗОТ ОБЩИЙ, ММОЛЬ-2/3-{2050.7766667, 2094.9733333}	0,000	0,000	0,000	0,000	0,000	0,007
30	АЗОТ ОБЩИЙ, ММОЛЬ-3/3-{2094.9733333, 2139.1700000}	0,000	0,000	0,407	0,407	0,136	0,235
31	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-1/3-{26.5300000, 26.7933333}	0,407	0,000	0.000	0,407	0,136	0,235
32	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-2/3-{26.7933333, 27.0566667}	0,000	0,407	0,000	0,407	0,136	0,235
33	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-3/3-{27.0566667, 27.3200000}	0,000	0,000	0,407	0,407	0,136	0,235
34	АЗОТ АМИННЫЙ, ММОЛЬ-1/3-{6.8700000, 6.9833333}	0,150	0,150	0,000	0,301	0,100	0,087
35	АЗОТ АМИННЫЙ, ММОЛЬ-2/3-{6.9833333, 7.0966667}	0,000	0,000	0,000	0,000	0,000	0,000
36	АЗОТ АМИННЫЙ, ММОЛЬ-3/3-{7.0966667, 7.2100000}	0,000	0,000	0,407	0,407	0,136	0,235
37	АСТ, МОЛЬ Ч/Л-1/3-{1.7600000, 1.8766667}	0,407	0,000	0,000	0,407	0,136	0,235
38	АСТ, МОЛЬ Ч/Л-2/3-{1.8766667, 1.99333333}	0,000	0,407	0,000	0,407	0,136	0,235
39	АСТ, МОЛЬ Ч/Л-3/3-{1.99333333, 2.1100000}	0,000	0,000	0,407	0,407	0,136	0,235
40	АЛТ, ММОЛЬ Ч/Л-1/3-{0.6500000, 0.6833333}	0,407	0,000	0,000	0,407	0,136	0,235
41	АЛТ, ММОЛЬ Ч/Л-2/3-{0.6833333, 0.7166667}	0,000	0,000	0,000	0,000	0,000	0,000
42	АЛТ, ММОЛЬ Ч/Л-3/3-{0.7166667, 0.7500000}	0,000	0,150	0,150	0,301	0,100	0,087
43	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-1/3-{109.7700000, 110.2066667}	0,150	0,150	0,000	0,301	0,100	0,087
44 45	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-2/3-{110.2066667, 110.6433333} КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-3/3-{110.6433333, 111.0800000}	0,000	0,000	0,000	0,000 0,407	0,000 0,136	0,000
46	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-3/3-{110.6433333, 111.0800000} СА, ММОЛЬ/Л-1/3-{2.3600000, 2.3833333}	0,000	0,000	0,000	0,407	0,130	0,233
47	СА, ММОЛЬ/Л-2/3-{2.38030000, 2.3833333} СА, ММОЛЬ/Л-2/3-{2.3833333, 2.4066667}	0,000	0,000	0,000	0,000	0,000	0,007
48	СА, ММОЛЬ/Л-3/3-{2.4066667, 2.4300000}	0,000	0,000	0,407	0,407	0,136	0,235
49	Р, ММОЛЬ/Л-1/3-{1.8400000, 1.8633333}	0,407	0,000	0,000	0,407	0,136	0,235
50	Р, ММОЛЬ/Л-2/3-{1.8633333, 1.8866667}	0,000	0,407	0,000	0,407	0,136	0,235
51	Р, ММОЛЬ/Л-3/3-{1.8866667, 1.9100000}	0,000	0,000	0,407	0,407	0,136	0,235
52	ВИТАМИН А, ММОЛЬ/Л-1/3-{2.1300000, 2.1466667}	0,407	0,000	0,000	0,407	0,136	0,235
53	ВИТАМИН А, ММОЛЬ/Л-2/3-{2.1466667, 2.1633333}	0,000	0,407	0,000	0,407	0,136	0,235
54	ВИТАМИН А, ММОЛЬ/Л-3/3-{2.16333333, 2.18000000}	0,000	0,000	0,407	0,407	0,136	0,235
55	СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333}	0,407	0,000	0,000	0,407	0,136	0,235
56	СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667}	0,000	0,407	0,000	0,407	0,136	0,235
57	СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000}	0,000	0,000	0,407	0,407	0,136	0,235
58	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000}	0,407	0,000	0,000	0,407	0,136	0,235
59	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000}	0,000	0,407	0,000	0,407	0,136	0,235
60	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000}	0,000	0,000	0,407	0,407	0,136	0,235
61	СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000}	0,407	0,000	0,000	0,407	0,136	0,235
62	СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000}	0,000	0,407	0,000	0,407	0,136	0,235
63 64	СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{304.5000000, 308.7000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-{487.6000000, 497.1333333}	0,000	0,000	0,407	0,407 0,407	0,136 0,136	0,235 0,235
65	СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-{487.6000000, 497.1333333}	0,407	0,000	0,000	0,407	0,136	0,235
66	СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 300.0000007} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{506.6666667, 516.2000000}	0,000	0,000	0,000	0,407	0,136	0,235
67	СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{300.0000007, 310.2000000}	0,407	0,000	0,000	0,407	0,136	0,235
68	СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.9666667, 5.2333333}	0,000	0,407	0,000	0,407	0,136	0,235
69	СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{5.2333333, 5.5000000}	0.000	0,000	0,407	0,407	0,136	0,235
70	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-1/3-{35.6000000, 36.7000000}	0,150	0,150	0,000	0,301	0,100	0,087
71	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-2/3-{36.7000000, 37.8000000}	0,000	0,000	0,000	0,000	0,000	0,000
72	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{37.8000000, 38.9000000}	0,000	0,000	0,407	0,407	0,136	0,235
0	Сумма	7,717	7,717	9,258	24,691	0,000	0,000
0	Среднее	0,107	0,107	0,129	0,000	0,114	0,000
0	Среднеквадратичное отклонение	0,168	0,168	0,188	0,000	0,000	0,174

Таблица 14 – Системно-когнитивная модель Inf3

KOD_PR	NAME	CLS1	CLS2	CLS3	SUMMA	SREDN	DISP
1	ЭРИТРОЦИТЫ, 1012 Л-1/3-{7.6000000, 7.7100000}	0,333	0,333	-0,667	0,000	0,000	0,577
2	ЭРИТРОЦИТЫ, 1012 Л-2/3-{7.7100000, 7.8200000}	0,000	0,000	0,000	0,000	0,000	0,000
3	ЭРИТРОЦИТЫ, 1012 Л-3/3-{7.8200000, 7.9300000}	-0,333	-0,333	0,667	0,000	0,000	0,577
4	ЛЕЙКОЦИТЫ, 109 Л-1/3-{6.5900000, 6.60333333}	-0,333	0,667	-0,333	0,000	0,000	0,577
5	ЛЕЙКОЦИТЫ, 109 Л-2/3-{6.6033333, 6.6166667}	0,000	0,000	0,000	0,000	0,000	0,000
6	ЛЕЙКОЦИТЫ, 109 Л-3/3-{6.6166667, 6.6300000}	0,333	-0,667	0,333	0,000	0,000	0,577
7	ГЕМОГЛОБИН, Г/Л-1/3-{127.0100000, 129.7200000}	0,333	0,333	-0,667	0,000	0,000	0,577
8	ГЕМОГЛОБИН, Г/Л-2/3-{129.7200000, 132.4300000}	0,000	0,000	0,000	0,000	0,000	0,000
9	ГЕМОГЛОБИН, Г/Л-3/3-{132.4300000, 135.1400000}	-0,333	-0,333	0,667	0,000	0,000	0,577
10	ОБЩИЙ БЕЛОК, Г/Л-1/3-{76.5800000, 77.5433333}	0,667	-0,333	-0,333	0,000	0,000	0,577

l 11	ОБЩИЙ БЕЛОК, Г/Л-2/3-{77.5433333, 78.5066667}	-0,333	0,667	-0,333	0.000	0,000	0,577
12	ОБЩИЙ БЕЛОК, Г/Л-2/3-{77.5433333, 78.3000007}	-0,333	-0,333	0,667	0,000	0,000	0,577
13	АЛЬБУЛИНЫ, Г/Л-1/3-{37.0900000, 37.5966667}	0,667	-0,333		0,000	0,000	0,577
				-0,333			
14 15	АЛЬБУЛИНЫ, Г/Л-2/3-{37.5966667, 38.1033333}	-0,333 -0.333	0,667	-0,333	0,000	0,000	0,577
	АЛЬБУЛИНЫ, Г/Л-3/3-{38.1033333, 38.6100000}	-,	-0,333	0,667	0,000	0,000	0,577
16 17	ГЛОБУЛИНЫ, Г/Л-1/3-{38.3700000, 38.9500000}	0,667	-0,333	-0,333	0,000	0,000	0,577
	ГЛОБУЛИНЫ, Г/Л-2/3-{38.9500000, 39.5300000}	-0,333	0,667	-0,333		0,000	0,577
18	ГЛОБУЛИНЫ, Г/Л-3/3-{39.5300000, 40.1100000}	-0,333	-0,333	0,667	0,000	0,000	0,577
19	А-ГЛОБУЛИН, Г/Л-1/3-{12.2800000, 12.5133333}	0,667	-0,333	-0,333	0,000	0,000	0,577
20	А-ГЛОБУЛИН, Г/Л-2/3-{12.5133333, 12.7466667}	-0,333	0,667	-0,333	0,000	0,000	0,577
21	А-ГЛОБУЛИН, Г/Л-3/3-{12.7466667, 12.9800000}	-0,333	-0,333	0,667	0,000	0,000	0,577
22	Р-ГЛОБУЛИН, Г/Л-1/3-{11.7000000, 11.8500000}	0,667	-0,333	-0,333	0,000	0,000	0,577
23	Р-ГЛОБУЛИН, Г/Л-2/3-{11.8500000, 12.00000000}	-0,333	0,667	-0,333	0,000	0,000	0,577
25	Р-ГЛОБУЛИН, Г/Л-3/3-{12.0000000, 12.1500000}	-0,333	-0,333	0,667	0,000	0,000	0,577
	У-ГЛОБУЛИН, Г/Л-1/3-{14.3900000, 14.5866667}	0,667	-0,333	-0,333	0,000	0,000	0,577
26	У-ГЛОБУЛИН, Г/Л-2/3-{14.5866667, 14.7833333}	-0,333	0,667	-0,333	0,000	0,000	0,577
27	У-ГЛОБУЛИН, Г/Л-3/3-{14.7833333, 14.9800000}	-0,333	-0,333	0,667	0,000	0,000	0,577
28	АЗОТ ОБЩИЙ, ММОЛЬ-1/3-{2006.5800000, 2050.7766667}	0,333	0,333	-0,667	0,000	0,000	0,577
29	АЗОТ ОБЩИЙ, ММОЛЬ-2/3-{2050.7766667, 2094.9733333}	0,000	0,000	0,000	0,000	0,000	0,000
30	АЗОТ ОБЩИЙ, ММОЛЬ-3/3-{2094.9733333, 2139.1700000}	-0,333	-0,333	0,667	0,000	0,000	0,577
31	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-1/3-{26.5300000, 26.7933333}	0,667	-0,333	-0,333	0,000	0,000	0,577
32	АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-2/3-{26.7933333, 27.0566667} АЗОТ ОСТАТОЧНЫЙ, ММОЛЬ-3/3-{27.0566667, 27.3200000}	-0,333	0,667	-0,333	0,000	0,000	0,577 0,577
		-0,333	-0,333	0,667			
34 35	АЗОТ АМИННЫЙ, ММОЛЬ-1/3-{6.8700000, 6.9833333}	0,333	0,333	-0,667	0,000	0,000	0,577
	АЗОТ АМИННЫЙ, ММОЛЬ-2/3-{6.9833333, 7.0966667}	0,000	0,000	0,000			. ,
36	АЗОТ АМИННЫЙ, ММОЛЬ-3/3-{7.0966667, 7.2100000}	-0,333	-0,333	0,667	0,000	0,000	0,577
37	ACT, MOЛЬ Ч/Л-1/3-{1.7600000, 1.8766667}	0,667	-0,333	-0,333	0,000	0,000	0,577
38	АСТ, МОЛЬ Ч/Л-2/3-{1.8766667, 1.9933333}	-0,333	0,667	-0,333	0,000	0,000	0,577
39 40	АСТ, МОЛЬ Ч/Л-3/3-{1.9933333, 2.1100000}	-0,333	-0,333	0,667	0,000	0,000	0,577
41	АЛТ, ММОЛЬ Ч/Л-1/3-{0.6500000, 0.6833333}	0,667	-0,333	-0,333	0,000	0,000	0,577
42	АЛТ, ММОЛЬ Ч/Л-2/3-{0.6833333, 0.7166667} АЛТ, ММОЛЬ Ч/Л-3/3-{0.7166667, 0.7500000}	0,000	0,000	0,000	0,000	0,000	0,000
43		-0,667 0,333	0,333	0,333	0,000	0,000	0,577
43	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-1/3-{109.7700000, 110.2066667}	0,000	0,333	-0,667	0,000	0,000	0,577
45	КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-2/3-{110.2066667, 110.6433333} КИСЛОТНАЯ ЕМКОСТЬ, ММОЛЬ/Л-3/3-{110.6433333, 111.0800000}	-0.333	-0,333	0,000 0,667	0,000	0,000	0,000
		-,	_	_	0,000	0,000	
46 47	СА, ММОЛЬ/Л-1/3-{2.3600000, 2.3833333}	0,333	0,333	-0,667			0,577
48	СА, ММОЛЬ/Л-2/3-{2.3833333, 2.4066667} СА, ММОЛЬ/Л-3/3-{2.4066667, 2.4300000}	0,000	0,000 -0,333	0,000 0,667	0,000	0,000	0,000
49			-0,333	-0,333			
50	Р, ММОЛЬ/Л-1/3-{1.8400000, 1.8633333}	0,667	0,667	-0,333	0,000	0,000	0,577 0,577
51	Р, ММОЛЬ/Л-2/3-{1.8633333, 1.8866667} Р, ММОЛЬ/Л-3/3-{1.8866667, 1.9100000}	-0,333			0,000	0,000	
52	ВИТАМИН А, ММОЛЬ/Л-1/3-{1.000000}	-0,333 0,667	-0,333 -0,333	0,667 -0,333	0,000	0,000	0,577 0,577
		-0.333				0,000	
53 54	ВИТАМИН А, ММОЛЬ/Л-2/3-{2.1466667, 2.1633333}	-,	0,667	-0,333 0,667	0,000	0,000	0,577 0,577
55	ВИТАМИН А, ММОЛЬ/Л-3/3-{2.1633333, 2.1800000} СОДЕРЖАНИЕ ЙОДА МКГ %-1/3-{8.4000000, 8.8333333}	-0,333 0,667	-0,333 -0,333	-0,333	0,000	0,000	0,577
56	СОДЕРЖАНИЕ ИОДА МКГ %-1/3-{8.4000000, 8.8333333} СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667}	-0,333	0,667	-0,333	0,000	0,000	0,577
57	СОДЕРЖАНИЕ ЙОДА МКГ %-2/3-{8.8333333, 9.2666667} СОДЕРЖАНИЕ ЙОДА МКГ %-3/3-{9.2666667, 9.7000000}	-0,333	-0,333	0,667	0,000	0,000	0,577
58	СОДЕРЖАНИЕ ИОДА МКГ %-3/3-{9.2666667, 9.7000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.6000000, 8.9000000}	0,667	-0,333	-0,333	0,000	0,000	0,577
59	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-1/3-{8.60000000, 8.90000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.90000000, 9.20000000}	-0,333	0,667	-0,333	0,000	0,000	0,577
60	СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-2/3-{8.9000000, 9.2000000} СОДЕРЖАНИЕ КОБАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000}	-0,333	-0,333	0,667	0,000	0,000	0,577
61	СОДЕРЖАНИЕ КОВАЛЬТА МКГ %-3/3-{9.2000000, 9.5000000} СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.3000000}	0,667	-0,333	-0,333	0,000	0,000	0,577
62	СОДЕРЖАНИЕ МЕДИ МКГ %-1/3-{296.1000000, 300.30000000} СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.5000000}	-0,333	0,667	-0,333	0,000	0,000	0,577
63	СОДЕРЖАНИЕ МЕДИ МКГ %-2/3-{300.3000000, 304.3000000} СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{304.5000000, 308.7000000}	-0,333	-0,333	0,667	0,000	0,000	0,577
64	СОДЕРЖАНИЕ МЕДИ МКГ %-3/3-{304.3000000, 308.7000000} СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-{487.6000000, 497.1333333}	0,667	-0,333	-0,333	0,000	0,000	0,577
65	СОДЕРЖАНИЕ ЦИНКА МКГ %-1/3-{467.6000000, 497.1333333} СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667}	-0,333	0,667	-0,333	0,000	0.000	0,577
66	СОДЕРЖАНИЕ ЦИНКА МКГ %-2/3-{497.1333333, 506.6666667} СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{506.6666667, 516.2000000}	-0,333	-0,333	0,667	0,000	0,000	0,577
67	СОДЕРЖАНИЕ ЦИНКА МКГ %-3/3-{300.0000007, 310.2000000}	0,667	-0,333	-0,333	0,000	0,000	0,577
68	СОДЕРЖАНИЕ МАРГАНЦА МКГ %-1/3-{4.7000000, 4.9000007} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.23333333}	-0.333	0,667	-0,333	0,000	0,000	0,577
69	СОДЕРЖАНИЕ МАРГАНЦА МКГ %-2/3-{4.9666667, 5.2333333} СОДЕРЖАНИЕ МАРГАНЦА МКГ %-3/3-{5.23333333, 5.5000000}	-0,333	-0,333	0,667	0,000	0,000	0,577
70	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{5.2333333, 5.5000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-1/3-{35.6000000, 36.7000000}	0,333	0,333	-0,667	0,000	0,000	0,577
71	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-1/3-(33.0000000, 30.7000000)	0,000	0,000	0,000	0,000	0,000	0,000
72	СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-2/3-{36.7000000, 37.8000000} СОДЕРЖАНИЕ ЖЕЛЕЗА МКГ %-3/3-{37.8000000, 38.9000000}	-0,333	-0,333	0,667	0,000	0,000	0,000
0	Сумма Сумма	0,000	0,000	0,000	0,000	0,000	0,000
0	Среднее	0,000	0,000	0,000	0,000	0,000	0,000
0		0,000	0,000	0,485	0,000	0,000	0,000
	Среднеквадратичное отклонение	0,422	0,422	0,400	0,000	0,000	0,442

2.4. Определение наиболее достоверной модели и придание ей статуса текущей

В режиме 4.1.3.6 мы видим, что очень многие модели имеют максимальную возможную достоверность по критерию L2, в том числе приведенные выше модели Inf1 (по интегральному критерию: «Резонанс знаний») и Inf3 (по обоим интегральным критериям) (рисунок 6).

Поэтому исследование моделируемой предметной области путем исследования этой ее модели корректно можно считать исследованием самой моделируемой предметной области.

Рисунок 6. Экранные формы режима верификации СК-моделей

Поэтому присвоим СК-модели INF3 статус текущей модели (рисунок 7):

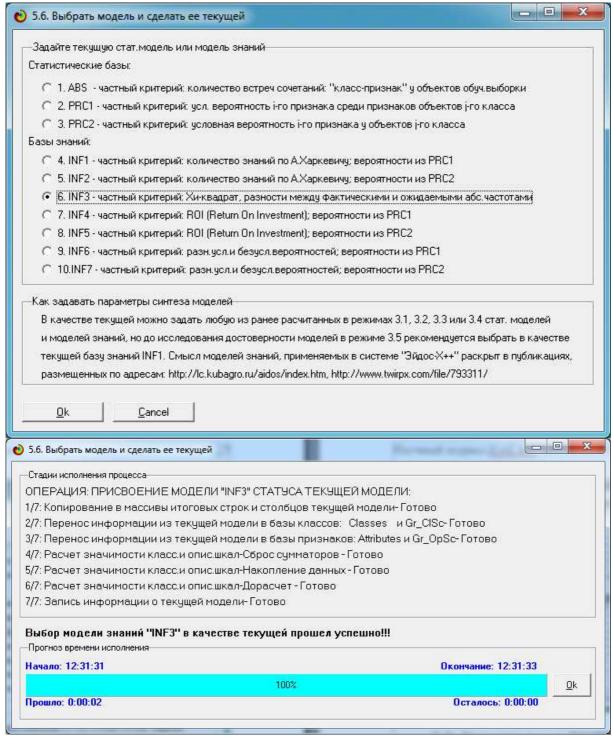


Рисунок 7. Экранные формы режима 5.6 придания модели статуса текущей

3. Решение поставленных задач путем численного моделирования

С помощью наиболее достоверной из созданных СК-моделей могут быть решены задачи идентификации, принятия решений и исследования предметной области путем исследования ее модели.

3.1. Задача-1: идентификация, диагностика, классификация и прогнозирование

Для решения задачи идентификации используется режим 4.1.2, работающий с текущей моделью.

Но в данной работе в качестве тестовой выборки мы используем обучающую выборку, распознавание которой во всех статистических и системно-когнитивных моделях было проведено сразу после их синтеза. Последней из этих моделей была модель Inf7. Поэтому еще раз выполним распознавание (режим 4.1.2) теперь уже в текущей модели Inf3:

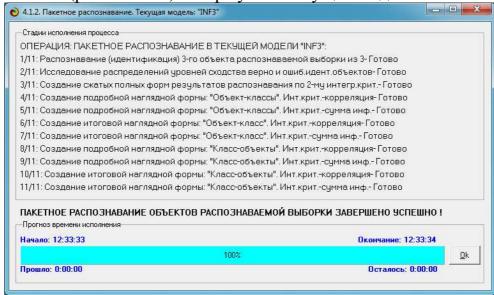


Рисунок 8. Экранная форма режима пакетного распознавания

Результаты распознавания отображаются в 12 формах, из которых мы приведем лишь две (рисунки 9 и 10):

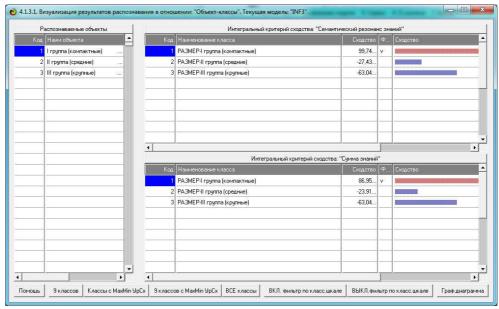


Рисунок 9. Экранная форма результатов распознавания

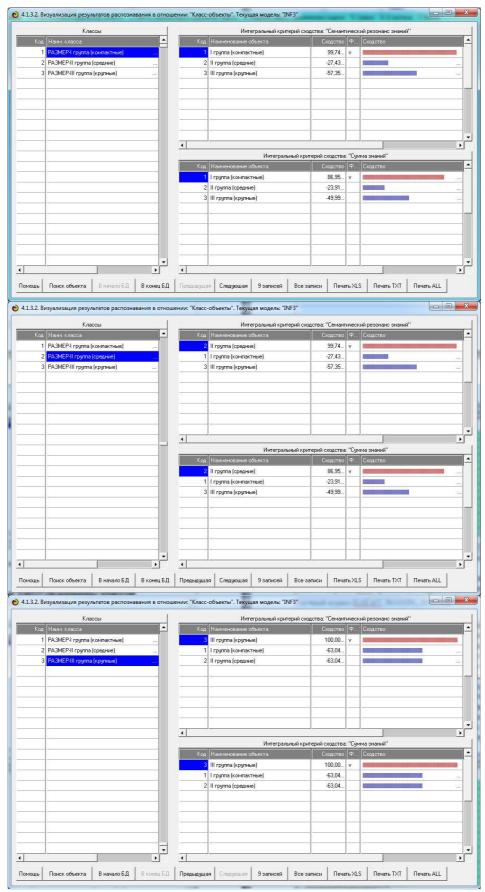


Рисунок 10. Экранная форма результатов распознавания

Из рисунка 6 и форм на рисунке 10 мы видим, что бычки всех трех групп размеров безошибочно распознаются с помощью созданной модели по морфологическому, биохимическому и микроэлементному составу их крови. Это значит, что 1-я задача, поставленная в работе, успешно решена.

3.2. Задача-2: сила и направление влияния значений показателей крови, когнитивные SWOT-диаграммы классов

Задача поддержки принятия решений является обратной по отношению к задаче идентификации. Если при решении задачи идентификации мы по морфологическому, биохимическому и микроэлементному составу крови определяем размер бычков, то при принятии решений, наоборот, по заданной группе размеров бычков определяем наиболее характерные для этой группы показатели крови, т.е. силу и направление влияния значений показателей крови на принадлежность бычков к группе по их размеру.

Эту задачу позволяет решить автоматизированный когнитивный SWOT-анализ [10], в выходных формах которого указано не просто наличие тех или иных показателей крови у той или иной группы бычков, но и указаны как наиболее характерные, так и наиболее нехарактерные для данной группы, причем с количественной оценкой степени характерности и не характерности.

Характерность признака означает, что вероятность его встречи в заданной группе *выше*, чем в среднем по всем группам. Не характерность не означает отсутствия признака, а означает, что вероятность его встречи в данной группе *ниже*, чем в среднем по всем группам.

Причем эти *количественные* оценки даются с применением системно-когнитивной модели, созданной непосредственно на основе эмпирических данных, а не как традиционно на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

На рисунках 11 приведены SWOT-характеристики всех трех групп бычков по размерам в СК-модели INF3.

Слева на SWOT-диаграмме мы видим наиболее характерные для данной группы показатели крови, а справа наиболее нехарактерные.

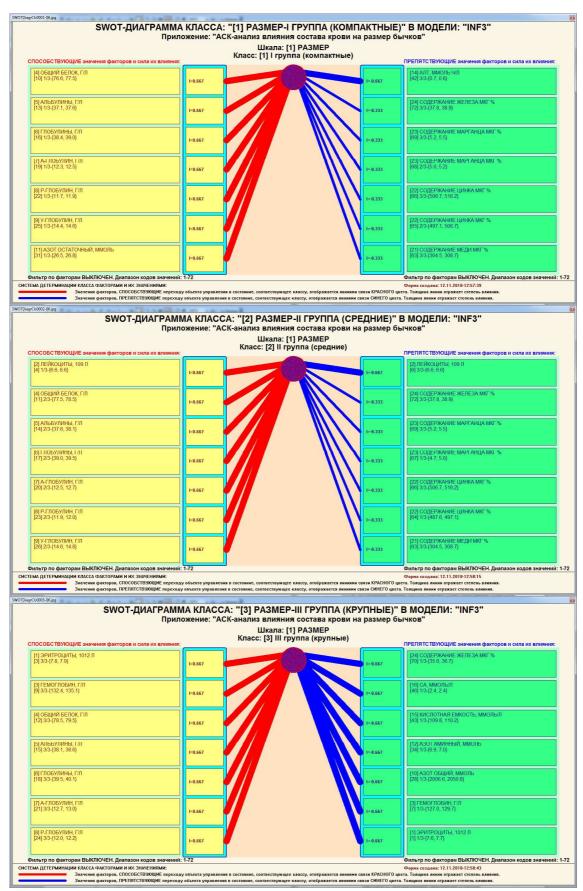


Рисунок 11. SWOT-характеристика показателей крови бычков разных размеров

3.3. Задача 3: исследование моделируемой предметной области путем исследования ее СК-модели

Если модель предметной области достоверна, то исследование модели можно считать исследованием самого моделируемого объекта, т.е. результаты исследования модели корректно относить к самому объекту моделирования.

В системе «Эйдос» есть довольно много возможностей для такого исследования, но мы рассмотрим лишь: результаты кластерноконструктивного анализа классов и признаков (когнитивные диаграммы и дендрограммы), а также нелокальные нейроны, нелокальные нейронные сети.

3.3.1. Когнитивные диаграммы классов

Эти диаграммы отражают сходство/различие классов. Мы получаем их в режимах 4.2.2.1 и 4.2.2.2 (рисунок 12):

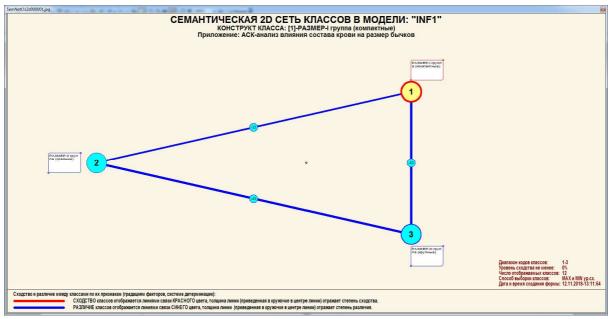


Рисунок 12. Когнитивная диаграмма групп

Из рисунка 12 мы видим, что все три группы бычков существенно отличаются друг от друга по показателям крови. Это значит, что выделение этих групп было вполне оправданным и обоснованным.

Отметим также, что на когнитивной диаграмме, приведенной на рисунке 12, показаны *количественные* оценки сходства/различия групп бычков по их размеру, полученные с применением системно-когнитивной модели, созданной непосредственно на основе эмпирических данных, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

3.3.2. Агломеративная когнитивная кластеризация классов

Информация о сходстве/различии классов, содержащаяся в матрице сходства, может быть визуализирована не только в форме, когнитивных диаграмм, пример которой приведен на рисунке 12, но и в форме агломеративных дендрограмм, полученных в результате когнитивной кластеризации [4, 5] (рисунок 13):

Рисунок 13. Дендрограмма когнитивной кластеризации групп

Из рисунка 13 мы видим, что группы компактных и средних бычков по показателям крови сходны друг с другом в большей степени, чем они обе с группой крупных бычков.

3.3.3. Когнитивные диаграммы признаков

Эти диаграммы отражают сходство/различие показателей крови по их смыслу, т.е. по содержащейся в них информации о принадлежности бычков с такими показателями крови к группам по их размеру. Мы получаем в режимах 4.3.2.1 и 4.3.2.2 (рисунок 14).

Из рисунка 14 видно, что показатели образуют два крупных кластера, противоположных по их смыслу. Эти кластеры образуют полюса конструкта.

Отметим, что на когнитивной диаграмме, приведенной на рисунке 14, показаны *количественные* оценки сходства/различия признаков, полученные с применением системно-когнитивной модели, созданной непосредственно на основе эмпирических данных, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

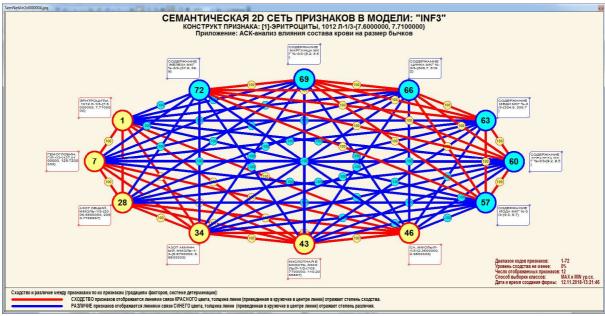


Рисунок 14. Когнитивная диаграмма и конструкт показателей крови бычков, отражающая сходство/различие этих показателей по их смыслу

3.3.4. Агломеративная когнитивная кластеризация признаков

На рисунке 15 приведена агломеративная дендрограмма когнитивной кластеризации признаков, а на рисунке 16 — график изменения межкластерных расстояний, полученные на основе той же матрицы сходства признаков по их смыслу, что и в когнитивных диаграммах, пример которой приведен на рисунке 14 [4, 5]. Из дендрограммы мы видим, что все показатели крови образуют 4 четко выраженных кластера, объединенных в полюса конструкта (показаны синими и красным цветами).

Рисунок 15. Дендрограмма когнитивной кластеризации показателей крови

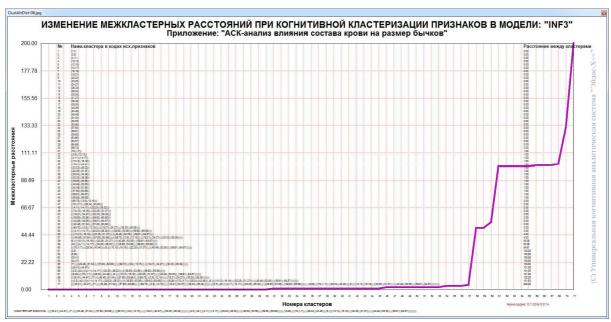


Рисунок 16. График изменения межкластерных расстояний

3.3.5. Нелокальные нейроны и нелокальные нейронные сети

Модель знаний системы «Эйдос» относится к *нечетким деклара- тивным* гибридным моделям и объединяет в себе некоторые особенности нейросетевой [11] и фреймовой моделей представления знаний. Классы в этой модели соответствуют нейронам и фреймам, а признаки рецепторам и шпациям (описательные шкалы – слотам).

От нейросетевой модели представления знаний модель системы «Эйдос» отличается тем, что:

- 1) весовые коэффициенты на рецепторах не подбираются итерационным методом обратного распространения ошибки, а считаются прямым счетом на основе хорошо теоретически обоснованной модели, основанной на теории информации (это напоминает байесовские сети);
- 2) весовые коэффициенты имеют хорошо теоретически обоснованную содержательную интерпретацию, основанную на теории информации;
- 3) нейросеть является нелокальной [11], как сейчас говорят «полносвязной». От фреймовой модели представления знаний модель системы «Эйдос» отличается своей эффективной и простой программной реализацией, полученной за счет того, что разные фреймы отличаются друг от друга не набором слотов и шпаций, а лишь информацией в них.

На рисунке 17 приведен фрагмент одного слоя нелокальной нейронной сети:

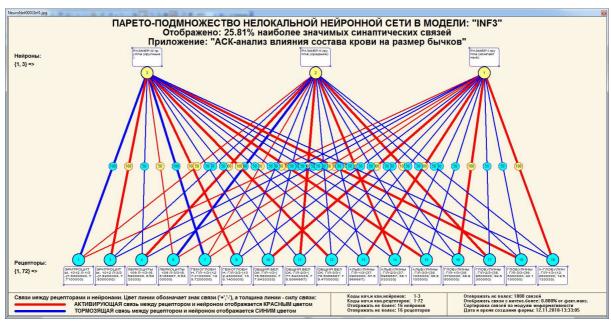


Рисунок 17. Один слой нелокальной нейронной сети (фрагмент)

4. Некоторые выводы, рекомендации и перспективы

Таким образом все поставленные в работе задачи успешно решены.

Необходимо отметить, что системно-когнитивные модели, разработанные в системе «Эйдос», могут быть применены для решения *практических задач* с применением той же системы «Эйдос», в которой они созданы, причем это применение возможно в адаптивном режиме, т.е. их можно совершенствовать в процессе эксплуатации, адаптировать к изменениям предметной области, локализовать или районировать для других регионов, разрабатывать новые модели для других животных и классов заболеваний и т.п, и т.д. Эти уникальные возможности обеспечиваются тем, что система «Эйдос» представляет собой не только среду для эксплуатации интеллектуальных приложений, но и является инструментом их создания и адаптации.

Например, приведенная в работе модель зависимости размеров бычков герефордской породы от морфологического, биохимического и микро-элементного состава их крови может быть локализована для других регионов, чем тот, в котором были собраны эмпирические данные [1], а также может быть адаптирована для бычков других пород и вообще других видов животных.

Возникает закономерный вопрос о возможности решения и других задач ветеринарии (а также других наук) путем применения автоматизированного системно-когнитивного анализа.

По мнению авторов АСК-анализ и система «Эйдос» представляют собой новый инновационный, т.е. доведенный до возможности практического применения, метод искусственного интеллекта может рассматриваться как универсальный инструмент решения всех тех задач в области ветеринарии (и других наук), для решения которых используется есте-

ственный интеллект. Причем это инструмент, многократно увеличивающий возможности естественного интеллекта, примерно также, как микроскоп и телескоп многократно увеличивает возможности естественного зрения, естественно только в том случае, если оно есть. Поэтому, конечно, этих задач огромное количество.

В качестве перспектив можно было бы отметить в частности решение следующих задач ветеринарии с применением автоматизированного системно-когнитивного анализа:

- поддержка принятия решений по выбору антибактериальных препаратов в зависимости от характера микробной флоры;
- поддержка принятия решений по определению дозы и пути введения препаратов группы пенициллина;
- поддержка принятия решений по определению дозы и пути введения цефалоспоринов;
- поддержка принятия решений по выбору антибактериальных препаратов с учетом основных токсических и аллергических реакций на антибактериальные препараты;
- исследование взаимодействия антибактериальных препаратов с другими препаратами при приеме внутрь и поддержка принятия решений по выбору антибактериальных препаратов с учетом результатов этих исследований.

Область ветеринарии, в которой перечисленные выше и другие задачи решаются с применением системно-когнитивного анализа, программным инструментарием которого в настоящее время является система «Эйдос», предлагается назвать «Когнитивной ветеринарией» или шире «Математической ветеринарией», по аналогии с математической экономикой (08.00.13), математической лингвистикой и т.д.

Эта идея находится в русле Указа Президента РФ от 7 июля 2011 г. N 899 "Об утверждении приоритетных направлений развития науки, технологий и техники в Российской Федерации и перечня критических технологий Российской Федерации", в котором под п.8 указаны Нано-, био-, информационные, когнитивные технологии³.

Этим и другим применениям способствует и то, что система «Эйдос» является мультиязычной интеллектуальной on-line средой для обучения и научных исследований [2, 3]⁴ и находится в полном открытом бесплатном доступе (причем с подробно комментированными актуальными исходными текстами: http://lc.kubagro.ru/_AIDOS-X.txt) на сайте автора по адресу: http://lc.kubagro.ru/aidos/_Aidos-X.htm.

³ Отметим, что все приведенные выше аргументы введения научного понятия: «когнитивная ветеринария» применимы и к другим направлениям науки, например: «когнитивная агрономия», «когнитивная экономика» и т.д.. Автор пытался развивать когнитивную математику [10] и когнитивную теорию управления [10], а также применять их в других областях науки и практики.

⁴ http://lc.kubagro.ru/aidos/Presentation Aidos-online.pdf

Численные примеры решения задач ветеринарии с применением технологий искусственного интеллекта размещены как облачные Эйдосприложения под номерами: 100, 125, 126, 127, 128, 131, 133 и доступны всем желающим в режиме 1.3 системы «Эйдос». Базовое интеллектуальное приложение, являющееся основой данной работы, размещено в Эйдособлаке под номером 133.

Конечно, представленный в статье уровень исследования относится хотя и к развитому, но эмпирическому уровню, т.е. это просто наблюдаемые факты, эмпирические закономерности и в лучшем случае, при условии подтверждения полученных результатов другими исследователями, может подняться до уровня эмпирического закона. Для перехода на теоретический уровень познания необходимо выдвинуть гипотезы содержательной интерпретации полученных результатов (которые может выдвинуть только специалист в области ветеринарии), объясняющие внутренние механизмы наблюдаемых закономерностей. Потом необходимо подтвердить, что эти научные гипотезы имеют прогностическую силу, т.е. позволяют обнаружить новые ранее неизвестные явления, и тогда эти гипотезы переходят в статус научной теории. Эта теория позволяют обобщить эмпирический закон до уровня научного закона [12].

В заключение авторы выражают благодарность проректору по научной работе Кубанского ГАУ им. И.Т. Трубилина доктору биологических наук профессору Андрею Георгиевичу Кощаеву за помощь в публикации статьи.

Литература

- 1. Джуламанов Е. Б., Левахин Ю. И. Морфологические и биохимические показатели крови бычков герефордской породы разных типов //Известия Оренбургского государственного аграрного университета. 2015. №. 2 (52). https://cyberleninka.ru/article/n/morfologicheskie-i-biohimicheskie-pokazateli-krovi-bychkov-gerefordskoy-porody-raznyh-tipov
- 2. Луценко Е.В. Открытая масштабируемая интерактивная интеллектуальная online среда для обучения и научных исследований на базе АСК-анализа и системы «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017. №06(130). С. 1 55. IDA [article ID]: 1301706001. Режим доступа: http://ej.kubagro.ru/2017/06/pdf/01.pdf, 3,438 у.п.л. http://ej.kubagro.ru/2017/06/pdf/01.pdf, 3,438 у.п.л.
- 3. Луценко Е.В., Открытая масштабируемая интерактивная интеллектуальная online среда «Эйдос» («Эйдос-online»). Свид. РосПатента РФ на программу для ЭВМ, Заявка № 2017618053 от 07.08.2017, Гос.рег.№ 2017661153, зарегистр. 04.10.2017. Режим доступа: http://lc.kubagro.ru/aidos/2017661153.jpg, 2 у.п.л.
- 4. Луценко Е.В. Метод когнитивной кластеризации или кластеризация на основе знаний (кластеризация в системно-когнитивном анализе и интеллектуальной системе «Эйдос») / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2011. №07(071). С. 528 –

- 576. Шифр Информрегистра: 0421100012\0253, IDA [article ID]: 0711107040. Режим доступа: http://ej.kubagro.ru/2011/07/pdf/40.pdf, 3,062 у.п.л.
- 5. Луценко Е.В. Агломеративная когнитивная кластеризация симптомов и синдромов в ветеринарии / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2018. №05(139). С. 99 116. IDA [article ID]: 1391805033. Режим доступа: http://ej.kubagro.ru/2018/05/pdf/33.pdf, 1,125 у.п.л.
 - 6. Caйт: http://lc.kubagro.ru/
- 7. Орлов А.И., Луценко Е.В. Системная нечеткая интервальная математика. Монография (научное издание). Краснодар, КубГАУ. 2014. 600 с. ISBN 978-5-94672-757-0. http://elibrary.ru/item.asp?id=21358220
- 8. Луценко Е.В. Метризация измерительных шкал различных типов и совместная сопоставимая количественная обработка разнородных факторов в системно-когнитивном анализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. №08(092). С. 859 883. IDA [article ID]: 0921308058. Режим доступа: http://ej.kubagro.ru/2013/08/pdf/58.pdf, 1,562 у.п.л.
- 9. Луценко Е.В. Моделирование сложных многофакторных нелинейных объектов управления на основе фрагментированных зашумленных эмпирических данных большой размерности в системно-когнитивном анализе и интеллектуальной системе «Эйдос-Х++» / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. №07(091). С. 164 188. IDA [article ID]: 0911307012. Режим доступа: http://ej.kubagro.ru/2013/07/pdf/12.pdf, 1,562 у.п.л.
- 10. Луценко Е.В. Количественный автоматизированный SWOT- и PEST-анализ средствами АСК-анализа и интеллектуальной системы «Эйдос-Х++» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. №07(101). С. 1367 1409. IDA [article ID]: 1011407090. Режим доступа: http://ej.kubagro.ru/2014/07/pdf/90.pdf, 2,688 у.п.л.
- 11. Луценко Е. В., Лойко В. И., Лаптев В. Н. Системы представления и приобретения знаний : учеб. пособие / Е. В. Луценко, В. И. Лойко, В. Н. Лаптев. Краснодар : Экоинвест, 2018. 513 с. ISBN 978-5-94215-415-8. https://elibrary.ru/item.asp?id=35641755
- 12. Луценко Е.В. Проблемы и перспективы теории и методологии научного познания и автоматизированный системно-когнитивный анализ как автоматизированный метод научного познания, обеспечивающий содержательное феноменологическое моделирование / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017. №03(127). С. 1 60. IDA [article ID]: 1271703001. Режим доступа: http://ej.kubagro.ru/2017/03/pdf/01.pdf, 3,75 у.п.л.
- 13. Лойко В.И. Математическая модель расчета экономических параметров управления транспортными потоками / В.И. Лойко, А.В. Параскевов, А.А. Чемеркина // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2008. №10(044). С. 89 103. Шифр Информрегистра:

- 0420800012\0143, IDA [article ID]: 0440810006. Режим доступа: http://ej.kubagro.ru/2008/10/pdf/06.pdf, 0,938 п.л.
- 14. Параскевов А.В. IT диверсии в корпоративной сфере / А.В. Параскевов, И.М. Бабенков, О.Б. Шилович // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2016. №02(116). С. 1355 1366. IDA [article ID]: 1161602086. Режим доступа: http://ej.kubagro.ru/2016/02/pdf/86.pdf, 0,75 у.п.л.
- 15. Параскевов А.В. Анализ проблемных участков городской транспортной сети (на примере г.Краснодара) / А.В. Параскевов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. №10(104). С. 1663 1674. IDA [article ID]: 1041410117. Режим доступа: http://ej.kubagro.ru/2014/10/pdf/117.pdf, 0,75 у.п.л.
- 16. Параскевов А.В. Оптимизация загруженности уличной дорожной сети / А.В. Параскевов, В.К. Желиба // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2015. №06(110). С. 853 865. IDA [article ID]: 1101506057. Режим доступа: http://ej.kubagro.ru/2015/06/pdf/57.pdf, 0,812 у.п.л.
- 17. Параскевов А.В. Предпосылки разработки адаптивной системы поддержки принятия оперативных решений в управлении ИТ-проектами / А.В. Параскевов, Ю.Н. Пенкина // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2015. №08(112). С. 1893 1905. IDA [article ID]: 1121508138. Режим доступа: http://ej.kubagro.ru/2015/08/pdf/138.pdf, 0,812 у.п.л.

References

- 1. Dzhulamanov E. B., Levaxin Yu. I. Morfologicheskie i bioximicheskie pokaza-teli krovi by`chkov gerefordskoj porody` razny`x tipov //Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. − 2015. − № 2 (52). https://cyberleninka.ru/article/n/morfologicheskie-i-biohimicheskie-pokazateli-krovi-bychkov-gerefordskoy-porody-raznyh-tipov
- 2. Lucenko E.V. Otkry`taya masshtabiruemaya interaktivnaya intellektual`naya on-line sreda dlya obucheniya i nauchny`x issledovanij na baze ASK-analiza i sistemy` «E`j-dos» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kuban-skogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lek-tronny`j resurs]. Krasnodar: KubGAU, 2017. №06(130). S. 1 55. IDA [article ID]: 1301706001. Rezhim dostupa: http://ej.kubagro.ru/2017/06/pdf/01.pdf, 3,438 u.p.l. http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf
- 3. Lucenko E.V., Otkry`taya masshtabiruemaya interaktivnaya intellektual`naya online sreda «E`jdos» («E`jdos-online»). Svid. RosPatenta RF na programmu dlya E`VM, Zayavka № 2017618053 ot 07.08.2017, Gos.reg.№ 2017661153, zaregistr. 04.10.2017. Rezhim dostupa: http://lc.kubagro.ru/aidos/2017661153.jpg, 2 u.p.l.
- 4. Lucenko E.V. Metod kognitivnoj klasterizacii ili klasterizaciya na osnove znanij (klasterizaciya v sistemno-kognitivnom analize i intellektual`noj sisteme «E`jdos») / E.V. Lucenko, V.E. Korzhakov // Politematicheskij setevoj e`lektronny`j na-uchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2011. − №07(071). S. 528 − 576. − Shifr In-

formregistra: 0421100012\0253, IDA [article ID]: 0711107040. – Rezhim dos-tupa: http://ej.kubagro.ru/2011/07/pdf/40.pdf, 3,062 u.p.l.

- 5. Lucenko E.V. Aglomerativnaya kognitivnaya klasterizaciya simptomov i sindromov v veterinarii / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauch-ny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2018. №05(139). S. 99 116. IDA [article ID]: 1391805033. Rezhim dostupa: http://ej.kubagro.ru/2018/05/pdf/33.pdf, 1,125 u.p.l.
 - 6. Sajt: http://lc.kubagro.ru/
- 7. Orlov A.I., Lucenko E.V. Sistemnaya nechetkaya interval`naya matematika. Monografiya (nauchnoe izdanie). Krasnodar, KubGAU. 2014. 600 s. ISBN 978-5-94672-757-0. http://elibrary.ru/item.asp?id=21358220
- 8. Lucenko E.V. Metrizaciya izmeritel`ny`x shkal razlichny`x tipov i sovmestnaya sopostavimaya kolichestvennaya obrabotka raznorodny`x faktorov v sistemno-kognitivnom analize i sisteme «E`jdos» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2013. №08(092). S. 859 883. IDA [article ID]: 0921308058. Rezhim dostu-pa: http://ej.kubagro.ru/2013/08/pdf/58.pdf, 1,562 u.p.l.
- 9. Lucenko E.V. Modelirovanie slozhny`x mnogofaktorny`x nelinejny`x ob``ektov upravleniya na osnove fragmentirovanny`x zashumlenny`x e`mpiricheskix danny`x bol`-shoj razmernosti v sistemno-kognitivnom analize i intellektual`noj sisteme «E`j-dos-X++» / E.V. Lucenko, V.E. Korzhakov // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhur-nal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2013. − №07(091). S. 164 − 188. − IDA [article ID]: 0911307012. − Rezhim dostu-pa: http://ej.kubagro.ru/2013/07/pdf/12.pdf, 1,562 u.p.l.
- 10. Lucenko E.V. Kolichestvenny`j avtomatizirovanny`j SWOT- i PEST-analiz sredstvami ASK-analiza i intellektual`noj sistemy` «E`jdos-X++» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvenno-go agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Kras-nodar: KubGAU, 2014. − №07(101). S. 1367 − 1409. − IDA [article ID]: 1011407090. − Re-zhim dostupa: http://ej.kubagro.ru/2014/07/pdf/90.pdf, 2,688 u.p.l.
- 11. Lucenko E. V., Lojko V. I., Laptev V. N. Sistemy` predstavleniya i priobrete-niya znanij : ucheb. posobie / E. V. Lucenko, V. I. Lojko, V. N. Laptev. Krasnodar : E`koinvest, 2018. 513 s. ISBN 978-5-94215-415-8. https://elibrary.ru/item.asp?id=35641755
- 12. Lucenko E.V. Problemy` i perspektivy` teorii i metodologii nauchnogo po-znaniya i avtomatizirovanny`j sistemno-kognitivny`j analiz kak avtomatizirovanny`j metod nauchnogo poznaniya, obespechivayushhij soderzhatel`noe fenomenologicheskoe mo-delirovanie / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhur-nal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2017. − №03(127). S. 1 − 60. − IDA [article ID]: 1271703001. − Rezhim dostupa: http://ej.kubagro.ru/2017/03/pdf/01.pdf, 3,75 u.p.l.
- 13. Lojko V.I. Matematicheskaya model` rascheta e`konomicheskix parametrov upravleniya transportny`mi potokami / V.I. Lojko, A.V. Paraskevov, A.A. Chemerkina // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasno-dar: KubGAU, 2008. − №10(044). S. 89 − 103. − Shifr Informregistra: 0420800012\0143, IDA [article ID]: 0440810006. − Rezhim dostu-pa: http://ej.kubagro.ru/2008/10/pdf/06.pdf, 0,938 p.l.
- 14. Paraskevov A.V. IT diversii v korporativnoj sfere / A.V. Paraskevov, I.M. Babenkov, O.B. Shilovich // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal Kub-GAU)

- [E`lektronny`j resurs]. Krasnodar: KubGAU, 2016. №02(116). S. 1355 1366. IDA [article ID]: 1161602086. Rezhim dostupa:http://ej.kubagro.ru/2016/02/pdf/86.pdf, 0,75 u.p.l.
- 15. Paraskevov A.V. Analiz problemny`x uchastkov gorodskoj transportnoj seti (na primere g.Krasnodara) / A.V. Paraskevov // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhur-nal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2014. №10(104). S. 1663 1674. IDA [article ID]: 1041410117. Rezhim dostu-pa: http://ej.kubagro.ru/2014/10/pdf/117.pdf, 0,75 u.p.l.
- 16. Paraskevov A.V. Optimizaciya zagruzhennosti ulichnoj dorozhnoj seti / A.V. Paraskevov, V.K. Zheliba // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal Kub-GAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2015. №06(110). S. 853 865. IDA [article ID]: 1101506057. Rezhim dostupa:http://ej.kubagro.ru/2015/06/pdf/57.pdf, 0,812 u.p.l.
- 17. Paraskevov A.V. Predposy`lki razrabotki adaptivnoj sistemy` podderzhki prinyatiya operativny`x reshenij v upravlenii IT-proektami / A.V. Paraskevov, Yu.N. Penkina // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2015. − №08(112). S. 1893 − 1905. − IDA [article ID]: 1121508138. − Rezhim dostupa: http://ej.kubagro.ru/2015/08/pdf/138.pdf, 0,812 u.p.l.