УДК 521.937+537.67+550.2+550.385.1+303.732.4

#### АВТОМАТИЗИРОВАННЫЙ СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ ВЛИЯНИЯ ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ НА ДВИЖЕНИЕ ПОЛЮСА ЗЕМЛИ И ВИЗУАЛИЗАЦИЯ ПРИ-ЧИННО-СЛЕДСТВЕННЫХ ЗАВИСИМОСТЕЙ В ВИДЕ КОГНИТИВНЫХ ФУНКЦИЙ

Трунев Александр Петрович к. ф.-м. н., Ph.D. Директор, A&E Trounev IT Consulting, Торонто, Канада

Луценко Евгений Вениаминович д. э. н., к. т. н., профессор Кубанский государственный аграрный университет, Краснодар, Россия

Бандык Дмитрий Константинович, Разработчик интеллектуальных систем Белоруссия

На основе семантических информационных моделей исследована зависимость параметров движения полюса Земли от положения небесных тел

Ключевые слова: ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕ-РИМЕНТ, ДВИЖЕНИЕ ПОЛЮСА ЗЕМЛИ, НУ-ТАЦИЯ, ПРЕЦЕССИЯ, СЕМАНТИЧЕСКИЕ ИН-ФОРМАЦИОННЫЕ МОДЕЛИ UDC 521.937+537.67+550.2+550.385.1+303.732.4

#### SYSTEMIC-COGNITIVE ANALYSIS OF THE CELESTIAL BODIES' IMPACT ON THE EARTH POLAR MOTION AND VIZUALIZATION OF THE CAUSATION IN THE FORM OF COGNITIVE FUNCTIONS

Alexander Trunev Cand.Phys.-Math.Sci., Ph.D. Director, A&E Trounev IT Consulting, Toronto, Canada

Lutsenko Evgeny Veniaminovich Dr. Sci. Econ., Cand. Tech. Sci., Professor Kuban State Agrarian University, Krasnodar, Russia

Bandyk Dmitriy Konstantinivich Intellectual systems developer *Belarus* 

Dependence of the Earth polar motion on celestial bodies' positions is examined on the basis of semantic information models

Keywords: COMPUTATIONAL EXPERIMENT, EARTH POLAR MOTION, NUTATION, PRECESSION, SEMANTIC INFORMATION MODELS

#### Введение

В работах /1-3/ развита модель вынужденной нутации, основанная на гипотезе о существовании гравитационного механизма обмена механическим моментом в Солнечной системе. На основе данных /4-6/ и модели /1/ была сделана оценка момента сил, обусловленного гравитационным воздействием небесных тел на нашу планету в период с 1963 по 1980 гг /2/ и в 1990-2006 гг /3/, а также исследованы механизмы взаимного влияния сейсмических событий, вариаций магнитного поля Земли и движения полюса.

В настоящей работе обсуждается технология моделирования и прогнозирования движения полюса Земли на основе системы искусственного интеллекта «Эйдос-астра» /7/ с использованием семантических информационных моделей и АСК-анализа /8-11, 23-24/. Путем визуализации матрицы информативностей сделана качественная оценка динамики движения полюса Земли.

# Задача о распознавании категорий событий в поле центральных сил

Рассмотрим задачу распознавания категорий по астрономическим данным /8-11/. Имеется множество событий А, которому ставится в соответствие множество категорий С<sub>i</sub>. Событиями можно считать измерение координат полюса Земли, а категориями – значение координат, лежащее в определенном интервале. Каждое такое событие характеризуется моментом времени и географическими координатами места его происхождения (которые в данной задаче фиксированны). По этим данным можно построить матрицу, содержащую координаты небесных тел, например углы долготы, широты и расстояния. Будем считать, что заданы частотные распределения  $N_i$  – число событий, имеющих отношение к данной категории  $C_i$ .

Определим число случаев реализации данной категории, которое приходится на заданный интервал изменения астрономических параметров, имеем в дискретном случае:

$$N_{ij}(x_j, k) = N_i w(\tilde{x}_j, k) \Delta x, \quad x_j < \tilde{x}_j < x_j + \Delta x$$
  

$$1 \le i \le n, \quad 1 \le j \le 2m, \quad k = 1, \dots, k_0$$
(1)

Здесь *w* – плотность распределения событий вдоль нормированной координаты. Нормированная переменная определяется через угловую и радиальную координаты следующим образом:

$$x_{jk} = \begin{cases} J_{j}(k)/2p, & 1 \le j \le m \\ \frac{r_{\max}(k) - r(k)}{r_{\max}(k) - r_{\min}(k)}, & m+1 \le j \le 2m \end{cases}$$

где  $r_{\min}$ ,  $r_{\max}$  - минимальное и максимальное удаление планеты от центра масс системы,  $k_0$  – число небесных тел, используемых в задаче.

Определим матрицу информативностей согласно /12/

$$I_{ijk} = \log_2 \frac{N_{ij} / \sum_{j} N_{ij}}{\sum_{i,j} N_{ij} / \sum_{i,j} N_{ij}}, N_{ij}(x_{jk}) \neq 0$$

$$I_{ijk} = 0, \ N_{ij}(x_{jk}) = 0,$$

$$dI_{jk} = \sqrt{\frac{1}{n} \sum_{i} \left( I_{ijk} - \frac{1}{n} \sum_{i} I_{ijk} \right)^2}$$

$$1 \le i \le n, \ 1 \le j \le 2m, \ 1 \le k \le k_0$$
(2)

Первая величина (2) называется информативность признака, а вторая величина является стандартным отклонением информативности или интегральной информативностью (ИИ).

Каждой категории можно сопоставить вектор информативности астрономических параметров размерности  $2mk_0$ , составленный из элементов матрицы информативности, путем последовательной записи столбцов, соответствующих нормированной координате, в один столбец, т.е.

$$c_{is} = I_{ijk}\Big|_{jk=s}, \quad 1 \le s \le 2mk_0 \tag{3}$$

С другой стороны, процесс идентификации, распознавания и прогнозирования может рассматриваться как разложение вектора распознаваемого объекта в ряд по векторам категорий (классов распознавания) /12/. Этот вектор, состоящий из единиц и нулей, можно определить по координатам небесных тел, соответствующих дате и месту происхождения события l в виде

$$a_{ls} = \begin{cases} 1, & (j-1)\Delta x \le x_{jk} (l) \le j\Delta x, \quad jk = s \\ 0, & 1 \le s \le 2mk_0 \end{cases}$$

$$(4)$$

Таким образом, если нормированная координата небесного тела из данных по объекту исследуемой выборки попадает в заданный интервал, элементу вектора придается значение 1, а во всех остальных случаях – значение 0. Перечисление координат осуществляется последовательно, для каждого небесного тела.

В случае, когда система векторов (3) является полной, можно точно любой вектор (4) представить в виде линейной комбинации векторов системы (3). Коэффициенты этого разложения будут соответствовать уровню сходства данного события с данной категорией. В случае неполной системы векторов (3) точная процедура заменяется распознаванием или разложением в ряд с некоторой погрешностью. При этом уровень сходства данных события с той или иной категорией можно определить по величине скалярного произведения вектора (4) на вектор (3), т.е. в координатной форме:

$$K_{il} = \frac{1}{|a_l||c_i|} \sum_{s=1}^{2mk_0} a_{ls}(A) c_{is}$$
(5)

Отметим, что возможны четыре исхода, при которых можно истинно или ложно отнести или не отнести данное событие к данной категории. Для учета этих исходов распознавание категорий в системе искусственного интеллекта «Эйдос-астра» /7/ осуществляется по параметру сходства, который определяется следующим образом /12/:

$$S_{i} = \frac{1}{N} \sum_{l=1}^{N} (BT_{il} + T_{il} - BF_{il} - F_{il}) \cdot 100 \%$$
(6)

S<sub>i</sub> – достоверность идентификации «і-й» категории;

N – количество событий в распознаваемой выборке;

ВТ<sub>il</sub>– уровень сходства «*l*-го» события с «i-й» категорией, к которой он был правильно отнесен системой;

T<sub>il</sub> – уровень сходства «*l*-го» события с «i-й» категорией, к которой он был правильно не отнесен системой;

BF<sub>il</sub> – уровень сходства «*l*-го» события с «i-й» категорией, к которой он был ошибочно отнесен системой;

F<sub>il</sub> – уровень сходства «*l*-го» события с «i-й» категорией, к которой он был ошибочно не отнесен системой.

При таком определении параметр сходства изменяется в пределах от -100% до 100%, как обычный коэффициент корреляции в статистике. При этом ошибки 1-го и 2-го рода (ошибки ложной идентификации и ложной неидентификации) приводят к уменьшению параметра сходства. Очевидно, что параметр сходства должен удовлетворять критерию простой проверки

 $S_i(N_i = 1) = 100 \%$ 

Было показано, что процедура распознавания по параметру сходства (6), реализованная в системе искусственного интеллекта «Эйдос-астра» /7/, является устойчивой как относительно объема выборки, так и относительно числа ячеек модели. Математическое обоснование этой процедуры дано в монографии /12/.

### Технология моделирования движения полюса Земли

Исследуемая база данных категорий движения полюса Земли была сформирована на основе данных IERS /4/, в период с 1 января 1963 года по 31 декабря 2010 г. При создании моделей в настоящей работе были использованы данные по координатам географического полюса – X, Y /4/, данные по индукции магнитного поля Земли /5/, а также данные по сейсмическим событиям /6/.

Из исходной базы было образовано несколько различных БД для исследования влияния астрономических параметров на координаты и скорость движения полюса. Для сравнения с данными моделирования /1-3, 8, 11/ была образована база, охватывающая 16032 дня наблюдений с 9 февраля 1963 г по 31 декабря 2006 г.

В качестве астрономических параметров были использованы долгота, широта и расстояние от Земли до десяти небесных тел – Солнца, Луны, Марса, Меркурия, Венеры, Юпитера, Сатурна, Урана, Нептуна и Плутона, и долгота Северного Узла Луны. Астрономические параметры вычислялись на каждый день в фиксированной точке с географическими координатами Гринвича в 12:00 GMT в топоцентрической системе координат. Отметим, что выбор этой точки не является существенным для решаемого класса задач. Из астрономических параметров и категорий движения полюса Земли была создана база данных, содержащая 16032 записи с обобщенной информацией о динамике вращения нашей планеты.

В работах /1-3/ была построена модель линейной регрессии с использованием 27 комбинаций астрономических параметров, характеризующих влияние каждого небесного тела:

$$P_{i1} = \frac{\sin LAT_i}{R_i} - \frac{\cos J_e}{R_i}$$

$$P_{i2} = k_i \frac{\cos LAT_i \sin LON_i}{R_i} - \frac{\sin J_e}{R_i}$$

$$P_{i3} = k_i \frac{\cos LAT_i \cos LON_i}{R_i}$$

$$k_i = \sin J_e \cos LAT_i \sin LON_i + \cos J_e \sin LAT_i, \quad i = 1, 2, ..., 10$$
(7)

Здесь долгота (LON), широта (LAT) и расстояние (R) определяется для каждого из 10 небесных тел,  $J_e = 23,439291^{\circ}$  - угол наклона земной оси относительно нормали к орбитальной плоскости. Структура комплексов (7) вытегает из аналогии электромагнитных и гравитоэлектромагнитных (GEM) явлений /3/. Отметим, что данные для расстояний от Земли до небесных тел вычисляются в формулах (7) в астрономических единицах. Параметры (7) были использованы в настоящей работе наряду с астрономическими параметрами.

Решение прямой задачи включает в себя нормирование входных параметров и приведение их к одному масштабу изменения в интервале (0;360), разбиение интервалов на М частей, вычисление матрицы абсолютных частот и информативности, в соответствии с формулами (1-2). Отметим, что в системе «Эйдос-астра» реализован режим автоматического синтеза нескольких семантических информационных моделей, в которых число ячеек принимает любое заданное значение M=2,3,...,173.

Решение обратной задачи включает в себя распознавание категорий по заданным астрономическим параметрам, в соответствии с уравнениями (3-6). Частным случаем задачи распознавания является определение достоверности идентификации категорий по астрономическим данным в каждой модели.

### Параметр сходства категорий координат полюса

В таблице 1 и на рис. 1 приведены данные параметра сходства 62 категорий X смещения полюса вдоль меридиана Гринвич и 60 категорий Y смещения полюса вдоль меридиана 90<sup>0</sup>W в двух моделях – M12, M160. Отметим, что параметр сходства в модели M160 является положительным для всех категорий. Наилучшим образом распознаются редко встречающиеся категории, которые соответствуют максимальным и минимальным значениям координат полюса Земли. Наихудшим же образом распознаются значения в окрестности нуля, но не само нулевое значение.



Таблица 1. Параметр сходства категорий смещения полюса в двух семантических моделях M12, M160

http://ej.kubagro.ru/2011/01/pdf/20.pdf

| Категория Х смеще- |     |        |        | Категория Ү смеще-                              |     |        |        |
|--------------------|-----|--------|--------|-------------------------------------------------|-----|--------|--------|
| ния полюса вдоль   | ABS | M12    | M160   | ния полюса вдоль<br>меридиана 90 <sup>0</sup> W | ABS | M12    | M160   |
| A1-X=-0 29609      | 11  | 93 107 | 88 988 | В1-Ү=-0 01292                                   | 30  | 61 036 | 55 179 |
| A2-X=-0.28609      | 8   | 91.055 | 95.316 | B2-Y=-0.00292                                   | 55  | 53,183 | 44,306 |
| A3-X=-0.27609      | 8   | 89.336 | 92,669 | B3-Y=0.00708                                    | 114 | 37,995 | 33,260 |
| A4-X=-0.26609      | 7   | 91.621 | 96.861 | B4-Y=0.01708                                    | 139 | 25.248 | 27.607 |
| A5-X=-0 25609      | 17  | 70,335 | 65,907 | B5-Y=0.02708                                    | 116 | 25 213 | 27 947 |
| A6-X=-0.24609      | 70  | 57,702 | 44.554 | B6-Y=0.03708                                    | 95  | 28.379 | 31.812 |
| A7-X=-0.23609      | 99  | 35 539 | 35 023 | B7-Y=0.04708                                    | 104 | 19 764 | 28 860 |
| A8-X=-0.22609      | 140 | 19.810 | 25.902 | B8-Y=0.05708                                    | 123 | 33,302 | 31,396 |
| A9-X=-0.21609      | 125 | 19,597 | 27.046 | B9-Y=0.06708                                    | 217 | 16,505 | 20.378 |
| A10-X=-0.20609     | 194 | 21.118 | 23.567 | B10-Y=0.07708                                   | 248 | 11.289 | 14.486 |
| A11-X=-0.19609     | 199 | 18.063 | 21.047 | B11-Y=0.08708                                   | 253 | 10.220 | 13,106 |
| A12-X=-0.18609     | 188 | 18,909 | 21.982 | B12-Y=0.09708                                   | 207 | 12,915 | 15.611 |
| A13-X=-0.17609     | 173 | 19.857 | 21,195 | B13-Y=0.10708                                   | 247 | 23,425 | 20.932 |
| A14-X=-0.16609     | 238 | 28.145 | 21.646 | B14-Y=0.11708                                   | 274 | 16.227 | 15.888 |
| A15-X=-0.15609     | 378 | 8.537  | 11.882 | B15-Y=0.12708                                   | 256 | 16.528 | 17.000 |
| A16-X=-0.14609     | 269 | 13.379 | 14.533 | B16-Y=0.13708                                   | 314 | 28.854 | 21.424 |
| A17-X=-0.13609     | 272 | 19,133 | 17,768 | B17-Y=0.14708                                   | 317 | 32,831 | 17.615 |
| A18-X=-0.12609     | 269 | 14,176 | 15.673 | B18-Y=0.15708                                   | 346 | 24,592 | 16.005 |
| A19-X=-0.11609     | 340 | 10.618 | 12,692 | B19-Y=0,16708                                   | 375 | 12,902 | 10,448 |
| A20-X=-0.10609     | 354 | 10.659 | 11,908 | B20-Y=0,17708                                   | 451 | 8,930  | 8,559  |
| A21-X=-0.09609     | 271 | 12 111 | 14 500 | B21-Y=0 18708                                   | 427 | 26 717 | 14 763 |
| A22-X=-0.08609     | 299 | 6 271  | 11 823 | B22-Y=0 19708                                   | 432 | 15 429 | 10 270 |
| A23-X=-0.07609     | 302 | 4 794  | 11 088 | B23-Y=0 20708                                   | 422 | 14 422 | 10,270 |
| A24-X=-0.06609     | 342 | -0.911 | 8 386  | B24-Y=0 21708                                   | 341 | 17 412 | 12 475 |
| A25-X=-0.05609     | 385 | 2.857  | 8,350  | B25-Y=0.22708                                   | 372 | 26.525 | 15.371 |
| A26-X=-0.04609     | 379 | 3.558  | 8,250  | B26-Y=0,23708                                   | 478 | 19.320 | 10.211 |
| A27-X=-0.03609     | 515 | 22.894 | 12.881 | B27-Y=0.24708                                   | 417 | 1.393  | 6.239  |
| A28-X=-0.02609     | 406 | 17.953 | 11.932 | B28-Y=0.25708                                   | 374 | 3.806  | 7.833  |
| A29-X=-0.01609     | 460 | 24.370 | 14.177 | B29-Y=0.26708                                   | 340 | 5.304  | 8.526  |
| A30-X=-0.00609     | 421 | 25,153 | 15,487 | B30-Y=0.27708                                   | 332 | 6,288  | 8,569  |
| A31-X=0.00391      | 441 | 12,979 | 12,421 | B31-Y=0.28708                                   | 333 | 7.823  | 10.256 |
| A32-X=0,01391      | 336 | 25,834 | 16,397 | B32-Y=0,29708                                   | 338 | 11,746 | 12,531 |
| A33-X=0,02391      | 347 | 21,116 | 14,917 | B33-Y=0,30708                                   | 356 | 11,338 | 12,865 |
| A34-X=0,03391      | 347 | 11,430 | 12,814 | B34-Y=0,31708                                   | 400 | 12,730 | 12,000 |
| A35-X=0,04391      | 369 | 13,517 | 11,956 | B35-Y=0,32708                                   | 427 | 23,162 | 14,102 |
| A36-X=0,05391      | 419 | 21,901 | 13,179 | B36-Y=0,33708                                   | 369 | 18,989 | 16,950 |
| A37-X=0,06391      | 469 | 5,804  | 9,755  | B37-Y=0,34708                                   | 370 | 24,196 | 16,550 |
| A38-X=0,07391      | 382 | 4,051  | 8,123  | B38-Y=0,35708                                   | 341 | 6,711  | 11,836 |
| A39-X=0,08391      | 414 | 5,878  | 8,821  | B39-Y=0,36708                                   | 379 | -1,910 | 9,542  |
| A40-X=0,09391      | 402 | 4,779  | 7,705  | B40-Y=0,37708                                   | 450 | -3,692 | 8,444  |
| A41-X=0,10391      | 410 | 6,197  | 9,395  | B41-Y=0,38708                                   | 372 | 4,202  | 12,603 |
| A42-X=0,11391      | 350 | 15,945 | 12,187 | B42-Y=0,39708                                   | 351 | 26,035 | 19,635 |
| A43-X=0,12391      | 371 | 15,923 | 11,843 | B43-Y=0,40708                                   | 289 | 10,195 | 14,458 |
| A44-X=0,13391      | 416 | 17,905 | 13,800 | B44-Y=0,41708                                   | 301 | 10,906 | 15,810 |
| A45-X=0,14391      | 267 | 12,607 | 13,914 | B45-Y=0,42708                                   | 335 | 18,085 | 16,250 |
| A46-X=0,15391      | 280 | 14,193 | 13,761 | B46-Y=0,43708                                   | 207 | 15,311 | 21,195 |
| A47-X=0,16391      | 284 | 8,112  | 10,425 | B47-Y=0,44708                                   | 214 | 20,315 | 23,139 |

| A48-X=0,17391 | 258 | 12,484 | 13,870 | B48-Y=0,45708 | 241 | 26,258 | 25,316 |
|---------------|-----|--------|--------|---------------|-----|--------|--------|
| A49-X=0,18391 | 257 | 28,020 | 19,737 | B49-Y=0,46708 | 229 | 11,786 | 18,155 |
| A50-X=0,19391 | 250 | 23,533 | 19,989 | B50-Y=0,47708 | 282 | 24,120 | 21,504 |
| A51-X=0,20391 | 300 | 16,840 | 18,145 | B51-Y=0,48708 | 181 | 23,767 | 26,280 |
| A52-X=0,21391 | 256 | 18,280 | 18,455 | B52-Y=0,49708 | 131 | 29,472 | 29,443 |
| A53-X=0,22391 | 294 | 18,553 | 21,527 | B53-Y=0,50708 | 125 | 12,019 | 24,905 |
| A54-X=0,23391 | 181 | 35,659 | 33,488 | B54-Y=0,51708 | 115 | 15,706 | 26,731 |
| A55-X=0,24391 | 170 | 14,493 | 22,535 | B55-Y=0,52708 | 122 | 17,515 | 27,229 |
| A56-X=0,25391 | 190 | 17,541 | 23,124 | B56-Y=0,53708 | 132 | 23,829 | 31,025 |
| A57-X=0,26391 | 79  | 24,478 | 33,086 | B57-Y=0,54708 | 147 | 29,622 | 32,487 |
| A58-X=0,27391 | 92  | 34,609 | 35,690 | B58-Y=0,55708 | 103 | 45,056 | 40,347 |
| A59-X=0,28391 | 78  | 32,166 | 38,276 | B59-Y=0,56708 | 68  | 64,349 | 47,098 |
| A60-X=0,29391 | 56  | 42,094 | 41,916 | B60-Y=0,57708 | 14  | 91,879 | 81,030 |
| A61-X=0,30391 | 72  | 43,858 | 41,414 |               |     |        |        |
| A62-X=0,31391 | 23  | 87,191 | 66,197 |               |     |        |        |

Путем визуализации матрицы информативностей (2), можно установить некоторые особенности влияния небесных тел на движение полюса. На рис. 2 представлена зависимость категорий координат полюса от долготы Солнца. Как следует из данных, приведенных на рис. 2, координаты полюса в зависимости от долготы Солнца образуют жгуты, которые формируются из отдельных годичных движений на протяжении многих лет.

## Параметр сходства категорий скорости движения полюса

В таблице 2 и на рис. 2 приведены данные параметра сходства 62 категорий X1 угловой скорости движения полюса вдоль меридиана Гринвич и 60 категорий Y1 угловой скорости движения полюса вдоль меридиана 90<sup>0</sup>W в двух моделях – M12, M160. Параметр сходства категорий угловой скорости движения полюса в среднем несколько выше, чем аналогичный параметр категорий координат. Особенно это заметно в модели M12. В этой связи отметим, что модель регрессии для угловой скорости в зависимости от комплексов (7) является более точной, нежели для координат – см. /1-3/.



Рис. 2. Зависимость категорий координат и угловой скорости полюса от долготы Солнца в модели М160



Это связано, видимо, с тем, что гравитомагнитное поле, ответственное за обмен механическим моментом в Солнечной системе, также имеет размерность угловой скорости. Поэтому отклик системы на внешнее гравитомагнитное поле непосредственно сказывается на угловой скорости, т.е. Земля откликается на гравитомагнитное поле подобно тому, как ведет себя, например, парамагнетик во внешнем магнитном поле.

Таблица. 2. Параметр сходства категорий угловой скорости движения полюса в двух семантических моделях M12, M160

| Категория Х1 угловой                   |     |        |        | Категория Ү1 угловой                    |     |        |        |
|----------------------------------------|-----|--------|--------|-----------------------------------------|-----|--------|--------|
| скорости движения полюса вдоль мериди- |     |        |        | скорости движения полюса вдоль меридиа- |     |        |        |
| ана Гринвич                            | ABS | M12    | M160   | на 90 <sup>0</sup> W                    | ABS | M12    | M160   |
| A1-X1=-0,006                           | 1   | 99,725 | 99,675 | B2-Y1=-0,00554                          | 1   | 99,680 | 99,969 |
| A2-X1=-0,0058                          | 2   | 70,590 | 71,316 | B4-Y1=-0,00514                          | 6   | 45,287 | 42,220 |
| A3-X1=-0,0056                          | 1   | 99,859 | 99,934 | B5-Y1=-0,00494                          | 4   | 72,499 | 56,604 |
| A4-X1=-0,0054                          | 5   | 53,839 | 45,123 | B6-Y1=-0,00474                          | 20  | 40,100 | 30,589 |
| A5-X1=-0,0052                          | 7   | 57,302 | 42,458 | B7-Y1=-0,00454                          | 42  | 32,357 | 24,554 |
| A6-X1=-0,005                           | 11  | 54,621 | 35,796 | B8-Y1=-0,00434                          | 46  | 22,713 | 19,021 |
| A7-X1=-0,0048                          | 23  | 37,634 | 24,757 | B9-Y1=-0,00414                          | 93  | 24,723 | 17,790 |
| A8-X1=-0,0046                          | 32  | 30,911 | 21,562 | B10-Y1=-0,00394                         | 130 | 22,768 | 18,098 |
| A9-X1=-0,0044                          | 47  | 24,977 | 17,773 | B11-Y1=-0,00374                         | 137 | 20,453 | 16,030 |
| A10-X1=-0,0042                         | 67  | 22,690 | 16,653 | B12-Y1=-0,00354                         | 169 | 20,565 | 14,077 |
| A11-X1=-0,004                          | 136 | 26,969 | 18,290 | B13-Y1=-0,00334                         | 204 | 20,357 | 14,163 |
| A12-X1=-0,0038                         | 150 | 31,164 | 18,825 | B14-Y1=-0,00314                         | 258 | 20,864 | 12,509 |
| A13-X1=-0,0036                         | 202 | 15,518 | 11,747 | B15-Y1=-0,00294                         | 345 | 21,111 | 12,375 |
| A14-X1=-0,0034                         | 265 | 24,420 | 11,938 | B16-Y1=-0,00274                         | 315 | 13,998 | 8,848  |
| A15-X1=-0,0032                         | 309 | 19,899 | 10,474 | B17-Y1=-0,00254                         | 390 | 17,637 | 8,590  |
| A16-X1=-0,003                          | 354 | 22,633 | 11,884 | B18-Y1=-0,00234                         | 434 | 13,957 | 6,512  |
| A17-X1=-0,0028                         | 356 | 15,218 | 7,964  | B19-Y1=-0,00214                         | 433 | 14,048 | 6,865  |
| A18-X1=-0,0026                         | 383 | 18,923 | 8,511  | B20-Y1=-0,00194                         | 446 | 10,650 | 5,886  |
| A19-X1=-0,0024                         | 335 | 14,455 | 7,676  | B21-Y1=-0,00174                         | 440 | 12,032 | 6,055  |
| A20-X1=-0,0022                         | 434 | 12,164 | 5,481  | B22-Y1=-0,00154                         | 449 | 16,426 | 6,890  |
| A21-X1=-0,002                          | 445 | 12,807 | 6,249  | B23-Y1=-0,00134                         | 473 | 6,882  | 5,484  |
| A22-X1=-0,0018                         | 412 | 4,158  | 5,159  | B24-Y1=-0,00114                         | 500 | 8,409  | 6,347  |
| A23-X1=-0,0016                         | 398 | 2,533  | 4,913  | B25-Y1=-0,00094                         | 586 | 9,229  | 5,616  |
| A24-X1=-0,0014                         | 422 | 8,313  | 6,455  | B26-Y1=-0,00074                         | 542 | 5,963  | 4,506  |
| A25-X1=-0,0012                         | 449 | 14,589 | 6,295  | B27-Y1=-0,00054                         | 581 | 12,833 | 5,776  |
| A26-X1=-0,001                          | 403 | -0,734 | 4,042  | B28-Y1=-0,00034                         | 515 | 14,283 | 6,859  |
| A27-X1=-0,0008                         | 510 | -2,492 | 2,903  | B29-Y1=-0,00014                         | 587 | 19,942 | 6,792  |
| A28-X1=-0,0006                         | 595 | 17,817 | 8,823  | B30-Y1=0,00006                          | 521 | 10,034 | 5,417  |
| A29-X1=-0,0004                         | 515 | 3,814  | 5,450  | B31-Y1=0,00026                          | 614 | 9,894  | 6,085  |
| A30-X1=-0,0002                         | 574 | 19,726 | 7,302  | B32-Y1=0,00046                          | 612 | 10,022 | 6,436  |
| A31-X1=0                               | 656 | 12,227 | 5,598  | B33-Y1=0,00066                          | 575 | 8,582  | 6,329  |
| A32-X1=0,0002                          | 554 | 15,275 | 6,135  | B34-Y1=0,00086                          | 468 | -0,114 | 5,879  |
| A33-X1=0,0004                          | 575 | 14,428 | 5,177  | B35-Y1=0,00106                          | 427 | 5,314  | 6,043  |
| A34-X1=0,0006                          | 546 | 10,138 | 5,655  | B36-Y1=0,00126                          | 403 | 12,713 | 7,883  |
| A35-X1=0,0008                          | 458 | 16,298 | 7,303  | B37-Y1=0,00146                          | 503 | 16,086 | 8,266  |
| A36-X1=0,001                           | 473 | 10,571 | 5,879  | B38-Y1=0,00166                          | 554 | 12,632 | 6,357  |
| A37-X1=0,0012                          | 503 | 5,448  | 5,546  | B39-Y1=0,00186                          | 456 | 13,519 | 7,070  |
| A38-X1=0,0014                          | 469 | 16,092 | 8,329  | B40-Y1=0,00206                          | 438 | 12,850 | 7,777  |
| A39-X1=0,0016                          | 485 | 24,756 | 8,437  | B41-Y1=0,00226                          | 427 | 16,062 | 8,730  |
| A40-X1=0,0018                          | 428 | 22,297 | 8,701  | B42-Y1=0,00246                          | 328 | 11,936 | 8,402  |
| A41-X1=0,002                           | 338 | 11,861 | 8,893  | B43-Y1=0,00266                          | 271 | 14,477 | 9,277  |

| A42-X1=0,0022 | 343 | 12,497 | 9,012  | B44-Y1=0,00286 | 306 | 20,212  | 11,669  |
|---------------|-----|--------|--------|----------------|-----|---------|---------|
| A43-X1=0,0024 | 344 | 17,778 | 11,092 | B45-Y1=0,00306 | 246 | 20,904  | 11,661  |
| A44-X1=0,0026 | 353 | 10,304 | 7,121  | B46-Y1=0,00326 | 197 | 21,319  | 14,674  |
| A45-X1=0,0028 | 257 | 16,147 | 10,179 | B47-Y1=0,00346 | 170 | 24,327  | 16,691  |
| A46-X1=0,003  | 329 | 19,453 | 11,078 | B48-Y1=0,00366 | 132 | 22,188  | 15,592  |
| A47-X1=0,0032 | 239 | 29,729 | 16,390 | B49-Y1=0,00386 | 99  | 22,965  | 17,315  |
| A48-X1=0,0034 | 192 | 18,143 | 12,274 | B50-Y1=0,00406 | 60  | 26,150  | 18,723  |
| A49-X1=0,0036 | 175 | 28,827 | 16,365 | B51-Y1=0,00426 | 37  | 30,890  | 22,624  |
| A50-X1=0,0038 | 132 | 16,837 | 13,455 | B52-Y1=0,00446 | 15  | 34,345  | 28,762  |
| A51-X1=0,004  | 106 | 23,704 | 16,669 | B53-Y1=0,00466 | 5   | 64,495  | 49,100  |
| A52-X1=0,0042 | 83  | 24,797 | 17,781 | B54-Y1=0,00486 | 8   | 52,283  | 39,026  |
| A53-X1=0,0044 | 65  | 31,835 | 20,242 | B55-Y1=0,00506 | 3   | 66,328  | 60,267  |
| A54-X1=0,0046 | 41  | 30,067 | 22,400 | B56-Y1=0,00526 | 4   | 57,425  | 52,381  |
| A55-X1=0,0048 | 15  | 44,628 | 30,233 | B59-Y1=0,00586 | 2   | 75,633  | 71,968  |
| A56-X1=0,005  | 11  | 44,362 | 34,462 | B62-Y1=0,00646 | 1   | 100,000 | 100,000 |
| A57-X1=0,0052 | 9   | 45,857 | 35,776 | B64-Y1=0,00686 | 1   | 99,899  | 99,973  |
| A58-X1=0,0054 | 5   | 65,268 | 51,362 | B65-Y1=0,00706 | 1   | 99,882  | 99,969  |
| A59-X1=0,0056 | 1   | 99,527 | 99,883 |                |     |         |         |
| A60-X1=0,0058 | 2   | 99,453 | 87,213 |                |     |         |         |

На рис. 2 представлена зависимость категорий угловой скорости полюса Земли в зависимости от долготы Солнца в модели М160, полученная путем визуализации матрицы информативностей. Отметим, что категории угловой скорости не образуют достаточно четких нитевидных структур, подобных тем, что образуют категории координат.

Такое поведение угловой скорости полюса в зависимости от долготы Солнца обусловлено наличием случайной составляющей, связанной с движением атмосферы и океана относительно земной коры /13-21/. Случайная составляющая угловой скорости меняется ежесуточно, поэтому угловое ускорение полюса, вычисленное по данным /4/, также содержит случайную составляющую. Увеличение же точности измерения координат полюса на три порядка в 1963-2006 гг привело к росту на порядок величины амплитуды случайной составляющей в угловом ускорении. Случайная компонента углового ускорения полюса Земли превосходит регулярную составляющую, что делает прогноз движения полюса крайне сложной задачей, которая не нашла еще окончательного решения /22/. Следовательно, предполагаемая причинность событий в соответствии с законом Ньютона, в котором зависимость координат от времени является точной, заведомо не выполняется. В этом смысле любые оценки действующих сил и моментов, входящих в закон Ньютона, являются произвольными, что хорошо видно при анализе современной теории вращения Земли, в которой неизвестные силы заменяются гипотетическими силами, обусловленными неизвестным движением в атмосфере, Мировом океане и в мантии /22/. В таком случае с равным успехом можно моделировать неизвестные силы, как обусловленные только влиянием небесных тел, что было показано в цитированных работах /1-3/, в которых были развиты модели регрессии для оценки момента сил, вызванного гравитомагнитным влияние небесных тел.

#### Модель движения полюса Земли

Используя матрицу информативностей, можно оценить зависимости угловой скорости движения полюса от координат – рис. 4-5. Из приведенных на этих рисунках данных следует, что движение полюса Земли можно описать системой уравнений /1/:

$$\mathcal{X}(n) = a_1 y(n) + b_1 + \sum_{j,k} \tilde{c}_{jk} P_{jk}(n), \quad 1 \le n \le N$$
$$\mathcal{X}(n) = a_2 x(n) + b_2 + \sum_{j,k} \tilde{d}_{jk} P_{jk}(n), \quad 1 \le n \le N$$
(8)

Как известно, на протяжении 100 лет наблюдается дрейф полюса /13, 19/. Для учета этого явления в правой части уравнений (8) введены константы скорости. Параметры модели (8) меняются в зависимости от исследуемого периода – см. таблицу 3. Период собственных колебаний системы (8) определяется в виде

$$T = 2p / \sqrt{-a_1 a_2}$$

Согласно полученным данным, период собственных колебаний системы изменяется незначительно, в пределах 12 дней, тогда как скорость дрейфа меняет знак, что указывает на неопределенность этого понятия во внешнем гравитомагнитном поле.

| Годы                                   | 1990-2006  | 1963-2006   | 1963-1980   | 1980-1996   |
|----------------------------------------|------------|-------------|-------------|-------------|
| Ν                                      | 6210       | 16031       | 6209        | 6054        |
| a1                                     | 0,0144     | 0,0148      | 0,0145      | 0,0145      |
| a2                                     | -0,0144    | -0,0145     | -0,014      | -0,0143     |
| b1                                     | 0,0957     | 0,0122      | -0,0238     | 0,0588      |
| b2                                     | 0,0455     | -0,0208     | -0,0755     | 0,0162      |
| Период колебаний, солнеч-<br>ных суток | 436,332313 | 428,9088521 | 440,9931559 | 436,3428345 |

Таблица 3. Параметры модели (8) в различные годы



Рис. 4. Зависимость угловой скорости движения полюса от координаты X (смещение вдоль меридиана Гринвич) в модели М170



Рис. 5. Зависимость угловой скорости движения полюса от координаты Y (смещение вдоль меридиана 90°W) в модели М170

Стандартная модель движения полюса Земли может быть выведена из уравнений Эйлера с переменным тензором инерции /13, 22/. В качестве основы используется уравнение изменения механического момента во вращающейся системе координат

$$\frac{d\bar{L}}{dt} + \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \boldsymbol{\Omega} \times L \end{bmatrix} = K$$
(9)

Здесь  $\Omega, L, K$  – векторы угловой скорости вращения Земли, углового момент и углового момент сил соответственно. Угловой момент связан с угловой скоростью и тензором инерции по формуле

$$L_i = I_{ik}\Omega_k + dL_i \tag{10}$$

Где  $dL_i$  – относительный угловой момент, обусловленный перемещением текучих сред относительно центра масс

$$d\mathbf{L} = \int r[\mathbf{r} \times \mathbf{v}] dV \tag{11}$$

Проецируя уравнения (9) на главные оси инерции, находим систему уравнений в форме Эйлера:

$$A \mathfrak{G}_{1}^{\bullet} + (C - B) \Omega_{2} \Omega_{3} = \widetilde{K}_{1}$$

$$B \mathfrak{G}_{2}^{\bullet} + (A - C) \Omega_{1} \Omega_{3} = \widetilde{K}_{2}$$

$$C \mathfrak{G}_{3}^{\bullet} + (B - A) \Omega_{1} \Omega_{2} = \widetilde{K}_{3}$$
(12)

Здесь  $\tilde{K}_i$  – эффективный угловой момент сил с учетом вариаций углового момента и тензора инерции. Полагая в первом и втором уравнениях системы (12)  $\Omega_3 = W_e = \text{const}$ , получим линейную подсистему, собственная частота которой определяется в виде

$$W_E = W_e \sqrt{(C-A)(C-B)/AB}$$
(13)

Используя данные /22/, находим, что период колебаний, соответствующий частоте (13), составляет 304,57 сидерических суток. В этом случае система (12) описывает нутацию Эйлера, т.е. движение полюса недеформируемой Земли. Реально же Земля имеет сложное строение, включающее мантию и ядро. В случае вязкоупругой модели Земли частота собственных колебаний системы (12) отличается от частоты нутации Эйлера. В этом случае в модель (12) необходимо добавить вязкие слагаемые. Период колебаний, вычисленный по моделям /1-3/ приведен в таблице 4.

Таблица 4. Период собственных колебаний (средних солнечных суток) и параметр вязкости (1/средние солнечные сутки) на различных интервалах времени по данным /1-3/

### http://ej.kubagro.ru/2011/01/pdf/20.pdf

| Интервал      | 1963-1980 | 1963-1980 | 1963-2006 | 1963-2006 | 1990-2006 | 1990-2006 |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Координата    | Х         | Y         | Х         | Y         | Х         | Y         |
| Период коле-  |           |           |           |           |           |           |
| баний         | 405,5779  | 455,8302  | 428,9089  | 428,9089  | 433,581   | 433,581   |
| Параметр вяз- |           |           |           |           |           |           |
| кости         | 0,000373  | -0,00295  | -0,0003   | -0,00023  | 0,000306  | -0,00022  |

Сравнивая данные, приведенные в таблицах 3-4, находим, что периоды собственных колебаний систем (8) и (12) совпадают в интервале 1963-2006 гг. Полученный в результате период – 428,9 средних солнечных суток, близок по величине к периоду 428 дней, который впервые установил в 1891 г американский астроном Сет Карло Чандлер.

Как известно, колебания полюса Земли связаны с синоптическими процессами в атмосфере /13-22/, следовательно, используя прогноз для вариаций угловой скорости вращения, можно предсказать синоптические процессы /20-21/. В указанных работах была высказана гипотеза, что колебания полюса Земли можно использовать для предсказания сейсмической и вулканической активности, а также эпидемий и социальноэкономических категорий.

Однако прогноз движения полюса Земли является сложной задачей, которая не нашла еще окончательного решения. Благодаря систематическим наблюдениям за положением внегалактических радиоисточников на основе сети станций VLBI, была реализована Международная небесная система координат ICRS, точность определения осей которой составляет  $10^{-5}$  угловой секунды (IERS, 2009). Столь высокая степень точности определения параметров вращения нашей планеты стала доступна лишь в последнее время, во многом, благодаря развитию модели /22/, которая содержит более 80000 параметров (сводные таблицы 5.2a, 5.2b, 5.2c, 5.3a, 5.3b, 5.4 из раздела 5 с сайта <u>ftp.maia.usno.navy.mil</u>), отражающих, в том числе, приливное воздействие небесных тел с учетом взаимного относительного движения атмосферы, океана и коры.

## Семантические информационные модели движения полюса

Для исследования влияния астрономических параметров небесных тел на движение полюса Земли было сформировано несколько семантических информационных моделей – М12, М80, М120, М142, М143, М144, М160, М170, в которых использовались комбинации параметров в виде (7), а также сами астрономические параметры. Всего было исследовано 18 семантических информационных моделей.

Было установлено, что параметр сходства слабо зависит от числа разбиения N (номер модели), а также от используемых комбинаций астрономических параметров. На рис. 6 представлен параметр сходства 236 категорий, объединяющих координаты и угловую скорость движения полюса, в двух моделях – M80 и M160, в которых в качестве входных параметров использовалась долгота и расстояние до небесных тел.

На рис. 7 представлен параметр сходства категорий угловой скорости в пяти моделях, в которых в качестве входных использовались параметры (7) в сочетании с широтой (LAT) и координатами полюса (эти модели использовались для получения данных на рис. 4-5).





Как следует из данных, приведенных на рис. 6-7, параметр сходства слабо зависит как от числа разбиения, так и от сочетаний параметров небесных тел при неизменном их числе (в текущей версии «Эйдос-астра» используется 23 входных параметра, из которых образуются 23N признаков). На рис. 8 представлена обобщенная зависимость параметра сходства от частоты встречаемости категорий координат и угловой скорости движения полюса в моделях M80 и M160, зависящих от долготы и расстояний до небесных тел. Параметр сходства монотонно убывает с ростом абсолютного числа случаев встречаемости категорий. Это означает, видимо, что увеличение длины рядов событий не ведет к повышению параметра сходства в данной задаче.

Другой целью исследования было обнаружение когерентных структур в распределении параметров, подобных тем, что приведены на рис. 2, 4-5. На рис. 9 представлены зависимости категорий угловой скорости движения полюса Земли от комплексов  $P_{i1}$  для Солнца, Сатурна, Урана и Нептуна, с которыми угловая скорость имеет наибольший коэффициент корреляции. Отметим, что эти комплексы дают наибольший вклад в изменение углового момента нашей планеты – см. /1-3/. Из приведенных на рис. 9 данных следует, что для указанных небесных тел исследуемые зависимости являются однотипными. Это свидетельствует о существовании общего механизма влияния небесных тел на движение полюса Земли, обусловленного гравитационным полем /1/.



Результаты, приведенный в работах /1-3, 7-11/ свидетельствуют, что прогноз сейсмической активности, вариаций магнитного поля и движения полюса Земли можно осуществлять на основе астрономических параметров небесных и, в том числе, с использованием комплексов  $P_{ik}$ , отражающих подобие гравитационного и электромагнитного взаимодействия в Солнечной системе. Таким образом, гипотеза /21/ о всеобщей взаимосвязи процессов, протекающих на нашей планете и охватывающих различные сферы – магнитосферу, атмосферу, земную кору, ядро и т.п., находит свое подтверждение в перечисленных исследованиях /1-3, 7-11/ и других работах авторов. Однако источником возмущений в этих сферах является не движение оси вращения Земли само по себе, а движение небесных тел Солнечной системы относительно центра Галактики и скопления галактик в созвездии Девы.



Рис. 9. Зависимость угловой скорости движения полюса Земли от комплексов астрономических параметров  $P_{i1}$  Солнца, Сатурна, Урана и Нептуна в модели М170

Ранее было установлено /1-3, 8/, что существует взимосвязь сейсмических событий, вариаций индукции магнитного поля и параметров движения полюса Земли, что обусловлено влиянием небесных тел. В таблицах 5-6 приведены коэффициенты корреляции параметров сейсмической активности, вычисленных по данным /6/, а также вертикальной компоненты индукции магнитного поля на восьми станциях /5/ с комплексами  $P_{ik}$ . Из данных, приведенных в таблицах 5-6 следует, что в случае Урана и Нептуна параметры сейсмических событий и индукция магнитного поля Земли

сильнее связаны с комплексами  $P_{i2}, P_{i3}$ , нежели с комплексом  $P_{i1}$ . Угловая же скорость движения полюса Земли, напротив, сильнее связана с комплексом  $P_{i1}$ .

Таблица 5. Коэффициенты корреляции средних параметров сейсмической активности по данным /6/ с комплексами  $P_{ik}$  Сатурна, Урана и Нептуна на протяжении 6009 дней: SUM, SUM\_M, SUM\_E, SUM\_V – ежедневное число, суммарная магнитуда, суммарная энергия и суммарный объем землетрясений с магнитудой  $m_b \ge 4$ ; AVR\_M, AVR\_E, AVR\_V – средние значения магнитуды, энергии и объема.

|       | SATU   | SATU    | SATU   | URAN   | URAN   | URAN    | NEPTU   | NEPTU  | NEPTUN |
|-------|--------|---------|--------|--------|--------|---------|---------|--------|--------|
|       | RN1    | RN2     | RN3    | US1    | US2    | US3     | NE1     | NE2    | E3     |
| SUM   | -0,194 | 0,0703  | 0,0513 | 0,127  | -0,419 | -0,201  | 0,0279  | -0,421 | -0,401 |
| SUM_M | -0,184 | 0,0685  | 0,0358 | 0,115  | -0,389 | -0,179  | 0,0256  | -0,391 | -0,37  |
| SUM_E | -0,136 | 0,0817  | -0,031 | 0,061  | -0,268 | -0,0813 | 0,00564 | -0,272 | -0,241 |
| SUM_V | -0,135 | 0,0474  | 0,106  | 0,0482 | -0,277 | -0,187  | -0,026  | -0,272 | -0,283 |
| AVR_M | 0,258  | 0,0241  | -0,425 | -0,211 | 0,632  | 0,569   | -0,0157 | 0,615  | 0,697  |
| AVR_E | 0,244  | -0,008  | -0,271 | -0,14  | 0,518  | 0,416   | 0,00801 | 0,508  | 0,555  |
| AVR_V | 0,231  | -0,0128 | -0,25  | -0,135 | 0,492  | 0,386   | 0,0045  | 0,483  | 0,523  |

Таблица 6. Коэффициенты корреляции вертикальной компоненты индукции магнитного поля земли по данным /5/ с комплексами  $P_{ik}$  Сатурна, Урана и Нептуна на протяжении 6009 дней.

|         | SATU   | SATU   | SATU   | URAN   | URAN   | URAN   | NEPTU   | NEPTU  | NEPTUN |
|---------|--------|--------|--------|--------|--------|--------|---------|--------|--------|
| Station | RN1    | RN2    | RN3    | US1    | US2    | US3    | NE1     | NE2    | E3     |
| GNA     | -0,294 | 0,494  | -0,103 | 0,187  | -0,941 | -0,119 | -0,0156 | -0,956 | -0,806 |
| GUA     | -0,438 | 0,233  | 0,43   | 0,272  | -0,965 | -0,649 | 0,00239 | -0,946 | -0,984 |
| IRT     | -0,429 | 0,0404 | 0,538  | 0,282  | -0,887 | -0,781 | 0,0224  | -0,86  | -0,971 |
| KAK     | -0,436 | 0,0292 | 0,55   | 0,28   | -0,882 | -0,793 | 0,0195  | -0,855 | -0,97  |
| MMB     | -0,437 | 0,0749 | 0,503  | 0,281  | -0,911 | -0,754 | 0,0196  | -0,887 | -0,979 |
| RES     | 0,344  | -0,109 | -0,344 | -0,124 | 0,879  | 0,612  | 0,141   | 0,871  | 0,911  |

| THL | 0,136  | 0,21  | -0,408 | 0,117 | 0,413  | 0,584  | 0,309 | 0,4    | 0,542  |
|-----|--------|-------|--------|-------|--------|--------|-------|--------|--------|
| DRV | -0,393 | 0,278 | 0,252  | 0,378 | -0,932 | -0,481 | 0,151 | -0,927 | -0,893 |

В случае Сатурна влияние всех трех комплексов  $P_{ik}$  на параметры сейсмических событий и магнитное поле является однотипным, как следует из данных, приведенных в таблицах 5-6. Возникает вопрос, подобно ли влияние Сатурна и вариаций магнитного поля Земли на сейсмические события? Для ответа на этот вопрос была сгенерирована семантическая информационная модель М170, в которой использовались астрономические параметры небесных тел, вертикальная компонента индукции магнитного поля Земли на 12 станциях по данным /5/ и категории однократных (A), двукратных (B) и трехкратных (C) сейсмических событий с магнитудой  $m_b \ge 4$ .

На рис. 10 представлены фрагменты матрицы информативностей указанной модели М170. Данные, приведенные на рис. 10, демонстрирую подобие влияния долготы Сатурна и вариаций магнитного поля Земли на частоту появления категорий сейсмических событий. Можно предположить, что гравитационное и электромагнитное влияние Сатурна возбуждает общий механизм, влияющий и на магнитное поле, и на сейсмические события, и на движение полюса Земли. В этой связи отметим, что существует заметная корреляция углового момента сил от Сатурна со средними параметрами сейсмических событий и с вариациями индукции магнитного поля /1/, тогда как аналогичный коффициент корреляции углового момента сил от Урана и Нептуна с параметрами сейсмических событий и вариациями индукции магнитного поля на порядок меньше по абсолютной величине (см. таблицы 3-5 из работы /1/).

Таким образом, механизмы влияния Сатурна и Урана/Нептуна на сейсмических событий, вариаций индукции магнитного поля и параметры движения полюса Земли различаются. Это объясняется нарушением подо-

бия электромагнитного и гравитационного взаимодействия Земли с Ураном и Нептуном, что обусловлено релятивистскими эффектами /1/.



Рис. 10. Зависимость частоты категорий однократных (А), двукратных (В) и трехкратных (С) сейсмических событий с магнитудой  $m_b \ge 4$  от долготы Сатурна и вариаций вертикальной компоненты индукции магнитного поля Земли на трех станциях в 1963-2006 гг по данным /5/ в модели М170.

Наконец, заметим, что прогностические возможности исследованных в настоящей работе семантических информационных моделей движения полюса Земли невелики, поэтому они могут быть использованы в прогнозах только совместно с динамическими моделями типа (8) и (12). Тем не менее, полученные на основе семантических информационных моделей результаты представляют самостоятельный интерес при решении проблемы взаимосвязи событий, явлений и процессов, обусловленных влиянием небесных тел на землетрясения, магнитное поле и движение полюса Земли.

Необходимо отметить, что развитый в автоматизированном системно-когнитивном анализе аппарат выявления и визуализации причинноследственных зависимостей в форме когнитивных функций [12, 23, 24] позволяет очень наглядно буквально увидеть такие объективно существующие явления и закономерности, о самом существовании которых еще недавно в науке вообще не было известно и которые весьма проблематично обнаружить другими методами. Это позволяет обоснованно говорить о том, что автоматизированный системно-когнитивный анализ [12] и его программный инструментарий – система «Эйдос-астра» [7] и базовая система «Эйдос» представляют собой новый инструмент исследования в астрономии и геофизике, своего рода «математический телескоп», открывающий качественно новые, ранее недоступные возможности исследования. История науки наглядно демонстрирует, что появление новых инструментов исследования, обеспечивающих новые возможности исследования, ранее всегда приводило к возникновению новых направлений в науке. Так создание микроскопа позволило открыть целый мир микроорганизмов и привело к возникновение микробиологии, создание оптического телескопа позволило Галилею Галилею сразу же открыть спутники Юпитера и привело к созданию оптической астрономии, создание радиотелескопа привело к возникновению радиоастрономии, и.т.д. Авторы считают, что применение систем искусственного интеллекта для анализа баз данных, содержащих информацию об огромном количестве событий на Земле в различных глобальных системах, позволяет выявить в этих данных влияние небесных тел Солнечной системы на эти события и, позволяет открыть существование новых, ранее неизвестных объективно существующих явлений и закономерностей. По сути это означает, что применение технологий искусственного интеллекта для исследования влияния небесных тел Солнечной системы на глобальные геосистемы: ноосферу, биосферу, атмосферу, магнитосферу, геосферу и другие, представляет собой новое перспективное направление исследований в науке.

# Литература

- Трунев А.П. Моделирование электромагнитного и гравитационного влияния небесных тел солнечной системы на смещение географического полюса и магнитное поле Земли// Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №07(61). – Режим доступа: <u>http://ej.kubagro.ru/2010/07/pdf/16.pdf</u>
- 2. Alexander Trounev. ESTIMATION OF THE CELESTIAL BODIES GRAVITATION IMPACT ON THE EARTH POLAR MOTION// Chaos and Correlation, October 28, 2010, <u>http://chaosandcorrelation.org/Chaos/CR10\_2010.pdf</u>
- Трунев А.П. Моделирование влияния небесных тел на движение полюса Земли / А.П. Трунев // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №10(64). – Режим доступа: <u>http://ej.kubagro.ru/2010/10/pdf/22.pdf</u>
- 4. Earth orientation centre / <u>http://hpiers.obspm.fr/eop-pc/</u>
- 5. World Data Centre for Geomagnetism (Edinburgh)/ http://www.wdc.bgs.ac.uk/catalog/master.html
- 6. International Seismological Center/ http://www.isc.ac.uk/
- Луценко Е.В., Трунев А.П. «Эйдос-астра» интеллектуальная система научных исследований влияния космической среды на поведение глобальных геосистем // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №07(61). – Режим доступа: <u>http://ej.kubagro.ru/2010/07/pdf/17.pdf</u>
- Трунев А.П., Луценко Е.В. Семантические информационные модели глобальной сейсмической активности при смещении географического и магнитного полюса // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №02(56). – Режим доступа: <u>http://ej.kubagro.ru/2010/02/pdf/15.pdf</u>
- А.П. Трунев, Е.В. Луценко. Прогнозирование землетрясений по астрономическим данным с использованием системы искусственного интеллекта // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2009. – №08(52). – Шифр Информрегистра: 0420900012\0086. – Режим доступа: <u>http://ej.kubagro.ru/2009/08/pdf/13.pdf</u>
- А.П. Трунев, Е.В. Луценко. Прогнозирование сейсмической активности и климата на основе семантических информационных моделей // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2009. – №09(53). – Шифр Информрегистра: 0420900012\0098. – Режим доступа: <u>http://ej.kubagro.ru/2009/09/pdf/09.pdf</u>
- А.П. Трунев, Е.В. Луценко. Системно-когнитивный анализ и прогнозирование сейсмической активности литосферы Земли, как глобальной активной геосистемы // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №01(55). – Шифр Информрегистра: 0421000012\0001. – Режим доступа: <u>http://ej.kubagro.ru/2010/01/pdf/22.pdf</u>

- 12. Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем). – Краснодар: КубГАУ, 2002, – 605 с.
- 13. Зотов Л. В. Вращение Земли: анализ вариаций и их прогнозирование / Дис. на соискание уч. степени к.ф.м.н., специальность 01.03.01 астрометрия и небесная механика, Москва, 2005.
- 14. Gross R.S. The effect of ocean tides on the Earth's rotation as predicted by the results of an ocean tide model.// Geophys. Res. Lett., 1993, V.20, P.293-296.
- Chao B.F., Ray R.D., Gipson J.M., Egbert G.D., Ma C. Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum.//J. Geophys. Res., 1996, V. 101, P. 20151-20136.
- Ray R.D., Steinberg D.J., Chao B.F., Cartwright D.E. Diurnal and semidiurnal variations in the Earth's rotation rate induced by oceanic tides.// Science, 1994, V.264, P. 830-832
- Brzezinski A. High frequency atmospheric excitation of Earth rotation.// IERS TN No 28, High frequency to subseasonal variations in Earth Rotation, Obseravatoir de Paris, September 2000, p.53.
- 18. Zharov V.E. Gambis D. Bizouard Ch. Diurnal and sub-diurnal variations of the Earth rotation.// IERS TN No 28, High frequency to subseasonal variations in Earth Rotation, Obseravatoir de Paris, September 2000.
- 19. Schuh H., Richter B., Nagel S. Analysis of long time series of polar motion.// ASP Conference Series, Vol. 208, 2000, P. 321
- 20. Сидоренков Н. С. Атмосферные процессы и вращение Земли. Гидрометеоиздат, СПб., 2002.
- 21. Сидоренков Н.С.. НЕСТАБИЛЬНОСТЬ ВРАЩЕНИЯ ЗЕМЛИ//ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК, том 74, № 8, с. 701-715 (2004)
- 22. IERS Conventions (2010). G'erard Petit1 and Brian Luzum (eds.), IERS Technical Note No. 36, Frankfurt am Main, 2010.
- 23. Луценко Е.В. АСК-анализ как метод выявления когнитивных функциональных зависимостей в многомерных зашумленных фрагментированных данных / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. Краснодар: КубГАУ, 2005. №03(11). Режим доступа: <u>http://ej.kubagro.ru/2005/03/pdf/19.pdf</u>
- 24. Луценко Е.В. Когнитивные функции как адекватный инструмент для формального представления причинно-следственных зависимостей / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. – Краснодар: КубГАУ, 2010. – №09(63). – Режим доступа: <u>http://ej.kubagro.ru/2010/09/pdf/01.pdf</u>